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Abstract

Heterogeneous multicore processors (HMPs), consisting
of cores with different performance/power characteris-
tics, have been proposed to deliver higher energy effi-
ciency than symmetric multicores. This paper investi-
gates the opportunities and limitations in using HMPs to
gain energy-efficiency. Unlike previous work focused on
server systems, we focus on the client workloads typi-
cally seen in modern end-user devices. Further, beyond
considering core power usage, we also consider the ‘un-
core’ subsystem shared by all cores, which in modern
platforms, is an increasingly important contributor to to-
tal SoC power. Experimental evaluations use client ap-
plications and usage scenarios seen on mobile devices
and a unique testbed comprised of heterogeneous cores,
with results that highlight the need for uncore-awareness
and uncore scalability to maximize intended efficiency
gains from heterogeneous cores.

1 Introduction

Energy-efficiency remains a critical concern for both mo-
bile devices and server systems. To improve energy-
efficiency while providing high-performance, chip ven-
dors have adopted heterogeneous multicore proces-
sors (HMPs). Examples include Variable SMP from
NVIDIA [1] and Big.LITTLE processing from ARM [4].
This work focuses on HMPs consisting of a mix of
cores that expose the same instruction-set-architecture
(ISA), but differ in their power/performance character-
istics. HMPs make it possible for different applications
within a diverse mix of workloads to be run on the ‘most
appropriate’ cores [3, 5, 6, 7]. For example, applications
that do not produce a result that is time critical to the user
or that are I/O heavy, can be run on low-power small
cores, while compute-intensive threads or applications
with their output visible to the user, such as browsing,
can be allocated to high-performance big cores.

Previous work on heterogeneous processors has pri-
marily focused on core power [5, 7], but modern multi-
core processors also contain uncore subsystem (see Fig-
ure 1), with components like the last level cache, in-
tegrated memory controllers, etc. With growing cache
sizes, increasing complexity of the interconnection net-
work, various core power optimizations, and the integra-
tion of SoC (system-on-a-chip) components on CPU die,
the uncore is becoming a significant power component
in total SoC power [8]. For energy-efficient operation,
therefore, it becomes increasingly important to account
for uncore while executing on heterogeneous cores.

This paper investigates the importance of uncore
power on the energy-efficiency of heterogeneous mul-
ticore platforms. Unlike previous work on heteroge-
neous processors focused on server workloads [3, 6, 7],
it targets client devices where energy is a premium re-
source and workload profiles are diverse. Since server
workloads are not representative of the usage model of
client devices, it characterizes the behavior of a diverse
set of real-world client applications which are typical of
end-user mobile devices and describes different ways in
which they can exploit heterogeneity. Using these work-
loads, it further analyzes the impact of heterogeneity on
workload performance and energy-efficiency, including
both core and uncore components.

Experimental evaluations use a unique, experimen-
tal, heterogeneous multicore platform, comprised of both
high and low power cores operating in a shared coher-
ence domain. Results demonstrate that heterogeneous
core architectures can provide significant performance
improvements while also lowering energy consumption
for a diverse set of applications when compared to ho-
mogeneous processor configurations. They also demon-
strate that potential savings are strongly affected by
the ‘uncore’ contribution, which motivates the need for
uncore-awareness in managing heterogeneous multicore
platforms and a scalable uncore design to completely re-
alize the intended gains.
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2 Beyond Core: Uncore

2.1 What is uncore?
The uncore is a collection of components of a processor
not in the core but essential for core performance. The
CPU core contains components involved in executing in-
structions, including execution units, L1 and L2 cache,
branch prediction logic, etc. Uncore functions include
the last level cache (LLC), integrated memory controllers
(IMC), on-chip interconnect (OCI), power control logic
(PWR), etc. as shown in Figure 1. With growing cache
sizes and the integration of various SoC components on
CPU die, the uncore is becoming an increasingly impor-
tant contributor to total SoC power.
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Figure 1: Core and uncore in multicore processors

2.2 Idle State Coordination
Modern multicore processors contain core idle states (C-
states) to progressively turn off components in order to
conserve power. These C-states are denoted as Cx, where
x is a digit. C0 is the active C-state when processor is
executing instructions, while a higher numbered C-state
(e.g., C2) is a deeper sleep state consuming lesser power.

Package Core 1
PCx C0 C1 C2

C0 PC0 PC0 PC0
Core 0 C1 PC0 PC1 PC1

C2 PC0 PC1 PC2

‘

Table 1: Core and package idle state coordination

In addition to core C-states, processors also contain
package idle states (PCx states) that govern uncore power
consumption. These package C-states are related to core
C-states in that the processor can only enter a low-power
package C-state when all of the cores are ready to en-
ter that same core C-state. Table 1 shows this coordina-
tion of core and package idle states for a two-core system
with three idle states. The resultant package C-state is al-
ways the lower of the two core C-states. Thus, the uncore
subsystem remains active and consumes power as long as
there is any active core on the CPU.

2.3 Impact of uncore
Figure 2 illustrates the impact of uncore power on the
energy consumption of an application executing on het-
erogeneous cores. A big core running an application
finishes its execution faster and enters a low-power idle
state. The same application when executed on a small
core takes longer (tsmall) to finish, which also keeps the
uncore active for a longer period of time. If uncore power
is substantial in comparison to core power, then the en-
ergy gains from running on a small core can be strongly
affected by the uncore power. For such a system, energy-
efficiency gains from small core execution may be off-
set by the increase in uncore energy consumption due to
longer execution time. This observation is in line with
prior work that highlights the tradeoff between CPU and
system-level power reduction in the context of frequency
scaling [9].
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Figure 2: Effect of uncore power on the energy-
efficiency of heterogeneous cores

Energy consumption for big and small core execution
for such platforms can be modeled using Equations 1
and 2, respectively. Here, E refers to the energy con-
sumed, t denotes execution time, and Pcore and Puncore

represent average core and uncore power, respectively.
Pidle is the idle platform power, and tidle is the corre-
sponding idle time, as shown in the figure.

Ebig = tbig ∗ (P big
core + P big

uncore) + Pidle ∗ tidle (1)

Esmall = tsmall ∗ (P small
core + P small

uncore) (2)

To understand the impact of uncore power, the anal-
ysis in Section 4 considers two uncore configurations:
fixed and scalable. The fixed uncore configuration uses
the same uncore subsystem when executing on either big
or small cores. The scalable uncore scenario models an
uncore where certain uncore components are turned off
or powered down as we move to the small core. For
example, fewer memory channels, memory controllers,
or a smaller cache can be used with a slow small core
that imposes smaller resource requirement on the cache
and memory subsystem. Hence, in this case, the uncore
power scales along with core power when a workload
moves to a different core.
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Workload Description Metric
browse loads a set of web-pages at an interval of 3 sec. to emulate user’s think time Load time

javascript Javascript benchmark performs a series of standard browser operations Load time
palbum photo-album application that flips through photographs at 0.5 sec. interval Load time
mplayer a H/W accelerated version of mplayer plays an HD movie clip FPS
mytube plays an H.264 video inside the browser for 120 seconds FPS

openarena plays a benchmarking demo from a 3D first-person-shooter game FPS
strike replays a demo session of a web-based 2D game (120 sec.) FPS
7zip a parallelized version of 7zip compress a text file using LZMA compression Time

eclipse Java based benchmark runs performance tests for the Eclipse IDE Time
filescan I/O intensive workload that scans through the Linux source tree Time
gmagick GraphicsMagick image editing application is used to resize a set of images Time

x264 x264 media encoder is used to encode a media file Time

Table 2: Client workload summary

3 Client Workloads

To assess the viability of using heterogeneity for client
systems, we choose a diverse set of real-world applica-
tions which are typical of modern end-user devices since
prior server-centric research on heterogeneous proces-
sors [3, 6, 7] does not directly address the needs and
processor usage models seen on client devices. Table 2
provides a summary of the applications used in our anal-
ysis and relevant performance metrics. This section cat-
egorizes these applications based on their behavior and
discusses opportunities for exploiting heterogeneity.

Intermittent Workloads: Client devices like cellphones
and tablets are typically powered on for long periods of
time, but often perform their heavy processing in short
bursts. Web-browsing is an example of such usage, and
workloads browse and palbum in Table 2 belong to this
category. A timeline trace of IPC (instructions-per-cycle)
for the browse workload is shown in Figure 3(a). Idle pe-
riods are marked by low IPC periods, while page-loads
correspond to spikes in the graph. Since page-loads gen-
erate high IPC activity, a big core can be used for ren-
dering the pages and improving page-load performance,
while resorting to a small core during low activity peri-
ods to conserve power.

Sustained Workloads: Sustained workloads differ from
intermittent workloads in that their behavior is uniform
over a longer duration. They can be further classified into
two sub-categories: sustained-high and sustained-low.

Sustained-low: Client applications like gaming and
media playback typically run for a long duration (a few
minutes to hours). Moreover, the wide adoption of ac-
celerators allows them to offload significant portions of
their computation to accelerators. Figure 3(b) shows the
IPC trace of the openarena gaming benchmark. As the
observed IPC is low for the application, it can be run

on a small core without significant degradation in perfor-
mance and at lower power (see results in Section 4).

Sustained-high: Mobile devices are also used for
compute-intensive tasks such as media encoding, video
editing etc. These applications typically have a high IPC
(e.g., see x264 encoder in Figure 3(c)), and their per-
formance scales well on a big core. This makes big
cores suitable for these applications when they require
high performance, e.g., when they are user-facing, while
a small core may provide higher energy-efficiency when
they run in background mode (e.g, virus-scan).

Multi-threaded Workloads: Increasing core count and
parallelization of applications on mobile devices present
additional opportunities for exploiting heterogeneity.
7zip, gmagick, and eclipse workloads are examples of
parallel applications. Similarly, the mytube workload
also uses multiple threads for media decoding and ren-
dering. Figure 3(d) highlights heterogeneity in the my-
tube workload as various threads within the application
differ significantly in their IPC. Since such threads dif-
fer in their behavior, heterogeneity can be leveraged by
appropriate task scheduling.

4 Experimental Evaluation

4.1 Testbed
Our experimental platform consists of a quad-core Intel
i7-2600 client processor. To create heterogeneity, we use
proprietary Intel tools to defeature a subset of the cores in
order to emulate the performance of low-powered small
cores [6]. A block diagram of the platform configuration
is shown in Figure 4. An on-die graphics processor is
used to accelerate graphics workloads. All of the cores
operate at a frequency of 2.6 GHz and share an LLC of
size 8 MB. All the workloads are run using Linux kernel
3.0 and automated using scripts.
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Figure 3: Diverse client workload profiles (IPC vs. Time)
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Figure 4: Experimental heterogeneous platform

4.2 Methodology
Experimental evaluation and analysis are carried out as
the multiple steps summarized below.

• Each workload is first evaluated on a system con-
figured to use only big cores. Multi-threaded appli-
cations are configured for a one to one mapping of
threads to big cores.

• Next, the workloads are run using only small cores.
• The metrics collected include: application perfor-

mance, IPC, LLC accesses, and various core and
package C-state residencies.

• With the help of data collected in the previous steps
and the power models described in Section 4.3, we
calculate the performance improvement and the en-
ergy savings of using small vs. big cores.

Our analysis assumes the use of big or small cores for the
entire application run. The implementation and evalua-
tion of a dynamic scheduling algorithm for client devices
remains part of our future work.

4.3 Power Model
The emulated heterogeneous platform mimics the per-
formance of small cores. However, it does not match the
power characteristics of an actual small core built using
a different process technology for low power consump-
tion. We, therefore, rely on power models to obtain core
and uncore energy consumption.

4.3.1 Core Power

The average power consumption of a CPU core can be
modeled using the following equations:

Pcore = Ractive ∗ P core
active + Ridle ∗ P core

idle (3)
P core

active = Cdyn ∗ V 2 ∗ f (4)

Here, Ractive and Ridle denote core active and idle state
residencies (%), and P core

active and P core
idle are the corre-

sponding power values. Cdyn is the dynamic capaci-
tance, V denotes the operating voltage, and f represents
the switching frequency. Big core Cdyn is modeled as a
function of IPC in Equation 5, as shown and validated by
other researchers [10]. Similarly, Equation 6 models the
capacitance for a small core having three-times smaller
area than that of the big core.

Cbig = 0.499 ∗ ipcbig + 0.841 (5)
Csmall = 0.472 ∗ ipcsmall + 0.176 (6)

4.3.2 Uncore Power

Similar to core power, uncore power is modeled using
package idle state residencies (Ux) as shown below:

Puncore = Uactive ∗ Puncore
active + Uidle ∗ Puncore

idle (7)
Puncore

active = Pwake + Pactivity ∗ LLCrate (8)

Further, uncore active power (Puncore
active ) is modeled as a

function of LLC activity in Equation 8 where Pwake is
the fixed power cost of waking up various uncore com-
ponents, while the Pactivity component scales with the
LLC access rate LLCrate (relative to peak access rate
including both cache hits and misses).

The analysis uses a value of 0.9 V for the voltage (V),
and frequency (f) is kept at 2.6 GHz. For this platform,
the average big core and small core power for all our
workloads is obtained to be 2.37 W and 0.95 W respec-
tively. A comparable uncore is modeled using a value of
1.2 W for Pwake and Pactivity in case of a fixed uncore
and scaled down to half for a scalable uncore. Core and
uncore idle power are assumed to be 0.1 W and a 1.5 W
power component is attributed to the on-die graphics pro-
cessor which also scales with the LLC activity.
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Figure 5: A comparison of the behavior of several client workloads on big vs. small cores
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Figure 6: Application performance comparison on big and small cores

4.4 Results

The results shown in Figure 5 provide a comparison of
application behavior on heterogeneous cores. Specifi-
cally, they compare average IPC (instructions-per-cycle),
core idle residency, and package idle state residency for
all of the workloads in Table 2, for big and small core ex-
ecution. As evident from Figure 5(a), most of the appli-
cations observe a significant decrease in their IPC when
running on the small vs. big cores. This reduction in IPC
results in the small cores being active for longer dura-
tions, thereby causing a decrease in core and package
idle residency (see Figures 5(b) and 5(c)). Further, many
applications are seen to have almost negligible package
idle residency. These applications either heavily use the
graphics processor (e.g., openarena), or they always keep
one of the cores busy (e.g., 7zip, gmagick, x264), and
thus do not allow the uncore to enter into an idle state.

The results shown in Figure 6 evaluate the impact on
performance of using heterogeneous processors for var-
ious client applications in Table 2, categorized by the
respective performance metrics. Figure 6(a) compares
the average load-time for the browse, javascript, and pal-
bum workloads. We see that the latency is significantly
decreased for these applications when using a big core.
Thus, a big core provides a notable performance boost
for such intermittent applications. In contrast and as de-

picted in Figure 6(b), when considering the frames-per-
second (FPS) metric for various graphics and media ap-
plications, we see only minor performance degradation
on a small core, at levels not perceivable to end-users.
Therefore, they can be run on a small core, to gain poten-
tial decreases in energy consumption (discussed further
below). The last graph (see Figure 6(c)) compares the
normalized execution times for various applications. All
of the applications except filescan in this category show
a significant improvement in performance with the big
core.

Energy savings results computed based on our power
models are shown in Figure 7. The figure shows sav-
ings for three configurations: core-only savings (C), to-
tal SoC-wide savings (C+UC) with a fixed uncore, and
with a scalable uncore. As seen in the figure, all of the
applications show significant gains on a small core in
terms of core energy savings. The palbum application
has the lowest savings of 17.58%, while openarena has
the largest savings of 52.79%. However, these savings
are strongly affected when the power consumption of the
uncore is taken into account. Some applications even ex-
hibit negative energy savings. On the other hand, when
a scalable uncore is used, these savings increase and
become comparable to core-only energy savings. Fur-
ther, Figure 8 shows the relative contribution of core and
uncore energy consumption for all the applications dur-
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ing big core execution, on a fixed uncore configuration.
These results include graphics power in the uncore com-
ponent. As evident, CPU-intensive applications (e.g.,
7zip, gmagick, x264) show a significant core power com-
ponent, while the uncore fraction dominates for other
applications like openarena and mplayer. These results
not only demonstrate the importance of taking uncore
power into account for scheduling operations, but they
also motivate the need for a scalable uncore design to
obtain large gains from heterogeneous multicores.

5 Related Work

Substantial prior work has proposed the use of hetero-
geneous processors to improve the energy efficiency of
multicore platforms [3, 5, 7]. Researchers have devel-
oped appropriate scheduling algorithms to efficiently run
applications on heterogeneous cores [3, 6]. Further, the
cost of uncore resources in many-core processors has
been modeled and analyzed [8]. In addition, arguments
have been made in favor of low-powered cores for the
design of datacenters (e.g., FAWN [2]).

In comparison, our work targets client devices where
energy is a premium resource, with diverse application
behavior and performance metrics. In this context, we
highlight the significance of uncore power in total SoC
power and analyze its impact on the energy efficiency of
several real-world client applications.

6 Conclusions & Future Work

This paper investigates the impact of uncore power on
the energy-efficiency of heterogeneous multicore proces-
sors for client devices. Using a diverse mix of emerging
client applications and an experimental heterogeneous
platform, we show that heterogeneous core architectures
can provide significant performance and energy gains
over homogeneous configurations for client devices. Fur-
ther, we highlight the growing importance of uncore
power with respect to total platform power consumption,
thereby motivating the need for uncore-awareness and a
scalable uncore design for energy-efficient execution on
heterogeneous multicore platforms.

Our future work is investigating client-centric energy-
aware scheduling algorithms for heterogeneous multi-
cores. Another interesting venue for research would be
to investigate the ideal ratios between the number of big
and small cores for different client systems.
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