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Abstract

A heterogeneous processor consists of cores that are

asymmetric in performance and functionality. Such a de-

sign provides a cost-effective solution for processor man-

ufacturers to continuously improve both single-thread per-

formance and multi-thread throughput. This design, how-

ever, faces significant challenges in the operating system,

which traditionally assumes only homogeneous hardware.

This paper presents a comprehensive study of OS support

for heterogeneous architectures in which cores have asym-

metric performance and overlapping, but non-identical in-

struction sets. Our algorithms allow applications to trans-

parently execute and fairly share different types of cores.

We have implemented these algorithms in the Linux 2.6.24

kernel and evaluated them on an actual heterogeneous plat-

form. Evaluation results demonstrate that our designs effi-

ciently manage heterogeneous hardware and enable signifi-

cant performance improvements for a range of applications.

1 Introduction

Advances in silicon technology have enabled processor

manufacturers to integrate more and more cores on a chip.

Most multi-core processors consist of identical cores, where

each core implements sophisticated microarchitecture tech-

niques, such as superscalar and out-of-order execution, to

achieve high single-thread performance. This approach can

incur high energy costs as the number of cores continues to

grow. Alternatively, a processor can contain many simple,

low-power cores, possibly with in-order execution. This ap-

proach, however, sacrifices single-thread performance and

benefits only applications with thread-level parallelism.

A heterogeneous processor integrates a mix of “big” and

“small” cores, and thus can potentially achieve the benefits

of both. Several usages motivate this design:

• Parallel processing: with a few big and many small cores,

the processor can deliver higher performance at possibly
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Figure 1: Performance comparisons for two big cores only vs. one

big core, and four small cores at different frequencies.

(a) Server product. (b) Client product.

Figure 2: Example server and client processors. Big (small)

squares represent big (small) cores with a 1:4 area ratio.

the same or lower power than an iso-area homogeneous

design. To illustrate the performance benefits, we em-

ulated a heterogeneous processor with one big core and

four small cores using a multiprocessor system (details in

Section 5), where the big core runs at 2.66 GHz with a 4

MB L2 cache and each small core has a lower frequency,

fewer instruction execution units, and a 2 MB L2. As-

suming one big core is of equal area to four small cores,

we compared this design to a homogeneous one with two

big cores only. Figure 1 shows our results. For the hetero-

geneous design, we also varied the small core frequency,

resulting in four configurations as shown on the x-axis.

We see that all of our benchmarks obtain higher perfor-

mance from at least one heterogeneous configuration.

• Power savings: the processor uses small cores to save

power. For example, it can operate in two modes: a high-

power mode in which all cores are available and a low-

power mode in which applications only run on the small

cores to save power at the cost of performance.
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• Accelerator: unlike the previous models, where the big

cores have higher performance and even more features,

in this model, the small cores implement special instruc-

tions, such as vector processing, which are unavailable on

the big cores. Thus, applications can use the small cores

as accelerators for these operations.

These usages are not disjoint. For example, in the par-

allel processing model, the small cores can also implement

unique vector instructions and act as accelerators. There are

typically more small cores than big cores in this model, but

not necessarily in the others. We expect future designs to

have a variety of big-small core ratios, possibly targeting

different market segments, as exemplified in Figure 2.

Despite their benefits, heterogeneous architectures pose

significant challenges to OS design, which has traditionally

assumed homogeneous hardware. This paper studies OS

support for heterogeneous architectures in which cores have

asymmetric performance and overlapping, but non-identical

instruction sets. We propose three algorithms that enable

applications to transparently execute and fairly share the

heterogeneous cores. The first algorithm, fault-and-migrate,

allows applications to run transparently without distinguish-

ing the instruction sets on different cores. The second al-

gorithm, faster-first scheduling, improves performance by

scheduling threads to faster cores first. Finally, we ex-

tend an SMP algorithm, distributed weighted round-robin

(DWRR) [19] to enable fair scheduling for performance-

asymmetric cores. Different from previous work, we have

implemented our designs in an actual OS and evaluated

them on a heterogeneous platform with performance and

instruction-based asymmetry. Our experience demonstrates

that, with moderate changes, an existing OS can be ex-

tended to effectively support heterogeneous hardware.

The remainder of this paper is organized as follows. In

Section 2, we discuss our architecture model and OS chal-

lenges. Section 3 describes our OS algorithms to support

cores with overlapping, but non-identical instruction sets.

Section 4 introduces two algorithms to handle performance

asymmetry. Section 5 discusses our hardware prototype

and Linux implementation. We present evaluation results

in Section 6 and discuss related work in Section 7. Finally,

we conclude in Section 8.

2 Heterogeneous Architectures

2.1 Design Space

We classify heterogeneous architectures into two types:

performance asymmetry and functional asymmetry. The

former refers to architectures where cores differ in perfor-

mance (and power) due to different clock speeds, cache

sizes, microarchitectures, and so forth. Applications run

correctly on any core, but can have different performance.

Big−core−only

Instructions

Shared

&
registers

Small−core−only

Figure 3: Illustration for instruction-based asymmetry.

Functional asymmetry refers to cores with non-identical

ISAs. For example, some cores may be general-purpose

while others are fixed-function. General-purpose cores can

also have different functionality due to ISA differences. For

example, to reduce area, a processor may support vector in-

structions only on a subset of cores. We use the term ISA to

refer to the portion of a core that is visible to software, in-

cluding instructions, architectural registers, data types, ad-

dressing modes, memory architecture, exception and inter-

rupt handling, and external I/O [25]. Without adequate sup-

port, programs compiled for one ISA can fail on cores with

a different ISA, even when the difference is small.

There are multiple dimensions of functional asymmetry,

one for each aspect of the ISA. In the extreme case, a pro-

cessor contains cores with disjoint ISAs, such as Intel® IXP

processors [29] and some implementations of integrated

CPU and GPU cores. Alternatively, cores can have overlap-

ping ISAs. The Cell* processor is an example where cores

differ in most aspects of the ISA, but share the same data

types and virtual memory architecture [12]. Due to disjoint

instruction sets, Cell* requires significant programming ef-

forts for the OS, compilers, libraries, and so forth.

We focus on an architecture model that exhibits per-

formance asymmetry and a form of functional asymmetry,

overlapping-ISA asymmetry, where cores are identical in

every aspect of the ISA except a set of instructions and ar-

chitectural registers, as Figure 3 illustrates. In our model,

cores share a large set of common instructions and registers

with identical encoding and semantics. For example, if two

cores support the same opcode, it must behave identically

on the two cores. Additionally, each core can implement a

small set of instructions unique to its own core type. Like

current CMPs, we assume that all cores share a physical

address space with coherent caches. For simplicity, our dis-

cussion assumes only two core types: big and small; our

algorithms, however, are applicable to more types of cores.

We believe that this model is a likely choice for future de-

signs. First, all cores supporting a large set of common in-

structions from the same ISA family and a coherent address

space greatly simplifies software compatibility. Second, de-

signers will likely choose a base ISA for all cores and ex-

tend some cores with special features, such as wider vector

processing, or defeature some to save power. Third, since

processors from the same company often already support a

large set of common instructions, our model fits naturally

and allows companies to re-use products to lower costs.
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Figure 4: Thread migration from a big core to a small core.

2.2 OS Challenges

Heterogeneous architectures present challenges to both

user and system software. Designs such as Cell* [12],

CUDA* [23], and EXOCHI [30] run the OS on the “main”

cores and access the “extra” cores as coprocessors via li-

braries or OS drivers. With the overlapping-ISA model, we

allow the OS to run on every core and use a single schedul-

ing algorithm. However, since most OSes assume homo-

geneous processors, they can face two sets of challenges:

Correctness. OSes typically query processor features on

the bootstrap processor (BSP) and assume the same for ev-

ery core. This assumption becomes invalid for heteroge-

neous processors. With instruction-based asymmetry, soft-

ware can fail on one core but succeed on another. This needs

to be handled properly to ensure correct execution.

Performance. Even when software runs correctly, obtain-

ing high performance can be challenging. With perfor-

mance asymmetry, an immediate challenge is how applica-

tions can share the high-performance cores fairly, especially

when they belong to different users. OS scheduling should

also enable consistent application performance across dif-

ferent runs. Otherwise, a thread may execute on a fast core

in one run but a slow one in another, causing performance

variations. Scheduling is further complicated as threads

can perform differently on different cores. In general, one

would expect higher performance on a faster core; however,

for I/O-bound applications, this may not be true. Choosing

the right thread-to-core mappings can be challenging.

3 Supporting Instruction-based

Asymmetry

To support instruction-based asymmetry, we extend an

existing OS with a fault-and-migrate mechanism. Our de-

sign requires that the hardware generate a fault-type ex-

ception when executing an unsupported instruction, which

most processors already support. In the fault handler, we

migrate the faulting thread to one of the cores that supports

the faulting instruction. On the new core, the thread re-

sumes execution and re-executes the faulting instruction.

During a migration, we save in memory the architectural

state of the faulting thread on the old core and restore it on

the new core, similar to how existing OSes perform thread

migration. Since registers on the two cores may differ, we

restore only those present on the new core. For registers

unique to the old core, we keep their state in memory— if

the thread migrates back to the old core or one of the same

type, it restores the state. Figure 4 illustrates this design.

Different policies can control when the thread should mi-

grate back. One policy is to migrate back after it has run for

a certain amount of time on the new core. To prevent thrash-

ing, a potentially better policy is to migrate back only when

the thread has not executed any instruction that could fault

again on its original core for a certain amount of time. In-

stead of its original core, the thread can also migrate back to

the least loaded core of the same type as the original core.

Section 5 describes our choices in the implementation.

3.1 Hardware Support

Fault-and-migrate requires that the hardware generate

a fault-type exception when executing an unsupported in-

struction. For Intel® Architecture (IA), this exception al-

ready exists, known as the invalid opcode exception, or UD

fault. However, some applications may trigger “normal”

UD faults unrelated to asymmetry via binary re-writing or

the ud2 instruction to trap execution of certain code paths.

Such a fault corresponds to an instruction that no core in

the system supports. Thus, if relying on UD faults, fault-

and-migrate faces two issues. First, it needs to distinguish

between “normal” faults and faults that trigger a migration.

Second, it needs to identify which cores support the faulting

instruction so that the thread can migrate to one of them.

To address these issues, we could provide hardware sup-

port. Two types of support can be useful: first, a mechanism

for the OS to discover different ISAs in the system and their

mappings to cores; second, extended UD fault reporting that

specifies which ISA a faulting instruction belongs to. With

this information, the OS can construct an ISA-to-core map-

ping at boot time. On a UD fault, if no ISA is appropriate,

the OS treats the fault as “normal”; otherwise, it migrates

the thread to a core with the appropriate ISA.

To determine which ISA a faulting instruction belongs

to, the instruction decoder of each core needs to under-

stand encodings of every ISA in the processor, which can be

costly to implement. If this hardware support is unavailable,

the OS could implement a software decoder at the cost of

performance. Alternatively, the OS can perform fault-and-

migrate conservatively on every UD fault. After the thread

migrates to a new core, if it faults again immediately on the

same instruction, both ISAs must not support the instruc-

tion and the fault is “normal”. To improve performance, the

OS can cache addresses of instructions that incur “normal”

faults to avoid migration if they execute again.
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3.2 Discussion

Support for core pinning. Some OSes support core pin-

ning to confine threads to subsets of cores. When deciding

where to migrate a thread, we consider only cores that both

support the faulting instruction and are allowed by core pin-

ning. If no such core exists, our fault handler sends a signal

to the faulting thread, which can choose to either abort or

invoke a handler of its own.

Migration versus emulation. Migration between cores

with disjoint caches causes a thread to re-load cache state

with extra cache misses. Previous work [20] shows that this

overhead is negligible on SMP systems, but can be signifi-

cant on NUMA. We expect a similar trend in future multi-

core systems. When migration overhead is high, we can

emulate faulting instructions instead. If handling the faults

is still too costly, we could use binary translation to avoid

the unsupported instructions altogether.

Faulting in kernel mode. Support for fault-and-migrate

in kernel mode presents two challenges. First, certain code

paths such as critical sections are non-preemptible and can-

not be transparently migrated. For example, the code may

assume that local CPU’s run queue is locked; if the thread

running this code migrates, the assumption could be invalid.

Second, even if the code is preemptible, the faulting instruc-

tion might be a privileged instruction that changes the CPU

behavior. Migrating such code to a different core transpar-

ently would result in the OS incorrectly assuming that the

state change occurred in the faulting core. Without hard-

ware support, deciding if a instruction can be safely mi-

grated in kernel mode becomes expensive. For this rea-

son, in this paper, we only support fault-and-migrate in user

mode and require that all kernel code only use instructions

available on every core. If, besides fault-and-migrate, the

rest of the OS also becomes asymmetry-aware, e.g., the OS

may select different instructions to run based on core types,

then this requirement may become unnecessary.

4 Supporting Performance Asymmetry

A key task for any OS is to balance application per-

formance and system throughput. For this reason, most

OSes balance load evenly on each CPU and ensure that each

thread receive a a fair share of CPU time. Our design ap-

plies the same principle. With performance asymmetry, we

balance load proportionally to each CPU’s performance. To

maximize application performance, we ensure that threads

run on high-performance cores whenever they are available.

To maximize throughput, we allow each thread to receive a

fair share of CPU time on the high-performance cores. If

power consumption is of concern, threads may prefer to run

on low-power cores. This paper focuses only on perfor-

mance and we leave power-related studies as future work.

For I/O or memory-bound threads, running on faster

cores may not always improve performance. For multi-

threaded applications, running non-critical threads faster

may not improve overall performance. Identifying these

scenarios, however, requires detailed knowledge about ap-

plication characteristics. No production OS assumes this

knowledge. Likewise, our design treats all threads equally

and assumes that they can obtain higher performance if run-

ning on faster cores. With a similar set of design principles,

we require only incremental changes to existing OSes, mak-

ing our design easy to deploy. The rest of this section de-

scribes our algorithms to support performance asymmetry.

4.1 Quantifying CPU Performance

An essential component of our algorithms is to assign a

performance rating per CPU such that we can estimate per-

formance differences if a thread is to run on different CPUs.

There are various ways to obtain CPU ratings. Our design

allows the OS to run a simple benchmark of its choice at

boot time and set a default rating for each CPU. When the

system is up, the OS or user can run complex benchmarks

such as SPEC CPU* to override the default ratings if de-

sired. The processor manufacturer can also provide CPU

ratings, which the OS can use as the default. All of these

approaches produce the same result, i.e., a static rating per

CPU. If the rating of a CPU is X times higher than the rat-

ing of another CPU, we say this CPU is X times faster.

The user or OS could adjust the ratings dynamically

based on workloads. When application performance is sta-

ble, the processor may also perform dynamic frequency and

voltage scaling, in which case, the OS could assume linear

change in application performance and adjust core ratings

proportionally to the frequency change. We do not explore

these options in this paper. Although static ratings may not

accurately reflect performance for all applications, they pro-

vide a simple, generic framework. If needed, one can al-

ways extend it with more application-specific policies.

4.2 Faster-First Scheduling

Our first algorithm considers the case where the system

is lightly loaded with no more threads than the faster CPUs

(i.e., CPUs with higher ratings). If two CPUs are idle and

a thread can run on both of them, we always run it on the

faster CPU. The algorithm consists of two components:

Initial placement. When scheduling a thread for the first

time after its creation, if two CPUs are idle, we always

choose the faster one to run it. If none is idle, our algo-

rithm has no effect and the OS performs its normal action,

typically selecting the most lightly loaded CPU.

Dynamic migration. During execution, a faster CPU can

become idle. If any thread is running on a slow CPU, we
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preempt it and move it to the faster CPU. Thus, if the to-

tal number of threads is less than or equal to the number

of faster CPUs, every thread can run on a faster CPU and

achieve maximum performance.

If there are more threads than faster CPUs, no one can

run on a faster CPU alone. To maximize throughput, it is

important that the threads receive fair shares of the CPUs.

Next section discusses how we achieve fair scheduling.

4.3 Fair Scheduling

In Section 4.3.1, we provide background on SMP fair

scheduling. Section 4.3.2 extends the notion of fairness to

performance-asymmetric systems. In Section 4.3.3, we de-

scribe an SMP fair scheduling algorithm, and extend it to

performance-asymmetric systems in Section 4.3.4.

4.3.1 Background on SMP Fairness

Consider an SMP system with P identical CPUs and N
threads. Each thread i, 1 ≤ i ≤ N , has a weight wi, either

specified by the user or derived from the thread’s priority. A

scheduler is perfectly fair if (1) it is work-conserving, i.e.,

it never leaves a CPU idle if there are runnable threads, and

(2) it allocates CPU time to threads in exact proportion to

their weights. Such a scheduler is commonly referred to as

Generalized Processor Sharing (GPS) [24]. Let Si(t1, t2)
be the amount of CPU time that thread i receives in interval

[t1, t2]. A GPS scheduler is defined as follows [24].

Definition 1. A GPS scheduler is one for which

Si(t1, t2)

Sj(t1, t2)
≥

wi

wj

, j = 1, 2, . . . , N

holds for any thread i that is continuously runnable in

[t1, t2] and both wi and wj are fixed in that interval.

A GPS scheduler is idealized since, for Definition 1 to

hold, all runnable threads must run simultaneously and be

scheduled with infinitesimally small quanta, which is infea-

sible. In practice, all fair schedulers emulate GPS approxi-

mately and are evaluated by their lag, which measures their

closeness to GPS [5]. An algorithm is considered to have

strong fairness if its lag is bounded by a small constant.

4.3.2 Fairness for Performance Asymmetry

In this section, we extend the notion of SMP fairness to

performance-asymmetric multiprocessors. Intuitively, the

CPU time on a fast core is “worth” more than a slow core.

Thus, our idea is to scale CPU time accounting based on

each CPU’s performance. For example, one unit of time on

a two times faster CPU would be equivalent to two units

of time on a slow CPU. After obtaining per-CPU ratings,

we normalize them to the CPU of the lowest rating. For

simplicity, hereinafter, whenever we refer to a CPU rating,

we mean its normalized value. Thus, the slowest CPU in

the system has a rating of one; the rating of any other CPU

indicates how many times faster the OS considers it is.

Let Rp denote the rating of any CPU p. We define the

scaled time on CPU p at real time t to be Rp · t. Thus, if

a task runs for x seconds on CPU p, its scaled CPU time is

Rpx. Let Si,p(t1, t2) be the amount of real CPU time that

thread i receives on CPU p in time interval [t1, t2]. Since a

thread may migrate to different CPUs during any time pe-

riod, we define scaled CPU time as follows:

Definition 2. The scaled CPU time that thread i receives in
interval [t1, t2] is Ŝi(t1, t2) =

∑P−1

p=0
(Rp · Si,p(t1, t2)).

Replacing CPU time with scaled CPU time, we can

extend SMP fairness to performance-asymmetric systems,

for which a scheduler is perfectly fair if (1) it is work-

conserving, and (2) the scaled CPU time of each thread in

any time interval is proportional to its weight. Similarly, a

GPS scheduler can be re-defined as follows.

Definition 3. A GPS scheduler for any performance-

asymmetric system is one for which

Ŝi(t1, t2)

Ŝj(t1, t2)
≥

wi

wj

, j = 1, 2, . . . , N

holds for any thread i that is continuously runnable in

[t1, t2] and both wi and wj are fixed in that interval.

Given these definitions, existing SMP fair scheduling al-

gorithms can apply to asymmetric systems, as long as we

change each use of CPU time to scaled CPU time. Prior

research [19] shows that distributed weighted round-robin

(DWRR) achieves better fairness, performance, and scala-

bility than other existing algorithms. Thus, we choose to

extend DWRR to support performance asymmetry. Next,

we provide background on the original DWRR algorithm.

4.3.3 Original DWRR Algorithm

DWRR works on top of an existing scheduler using per-

CPU thread run queues, a common design in most OSes. It

maintains a round number per CPU, initially zero. For each

thread, DWRR defines its round slice to be w·B, where w is

the thread’s weight and B is a constant, round slice unit. A

round is the shortest time period during which every thread

in the system completes at least one of its round slice. A

thread’s round slice determines its total CPU time allowed

in each round. For example, if a thread has weight two and

B is 30 ms, then its total runtime per round is at most 60 ms.

DWRR consists of two components: round slicing, which

enables local fairness on each CPU, and round balancing,

which enables global fairness across CPUs.

Round slicing. Besides the existing run queue per CPU,

which we call round-active, DWRR adds one more queue,
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round-expired. On each CPU, round-active and round-

expired are initially empty and the round number is zero.

The scheduler inserts runnable threads into round-active

and dispatches from there, as it normally does. For all

threads in round-active, the CPU’s round number defines

the round in which they are running. DWRR places no con-

trol over threads’ dispatch order and how long they run once

dispatched, which is controlled by the underlying scheduler.

With any existing scheduler, a thread may run for a

while, yield to another, and run again. DWRR monitors

each thread’s cumulative CPU time in a round. When-

ever it exceeds the thread’s round slice, DWRR preempts

the thread, removes it from round-active, and inserts into

round-expired. Thus, the invariant is that if a CPU’s round

number is R, then all threads in its round-active queue are

running in round R and all threads in round-expired have

finished round R and are waiting to start round R+1. Next,

we discuss when a CPU can advance from round R to R+1.

Round balancing. DWRR ensures that all CPUs in the

common case differ at most by one in their round num-

bers. This property enables fairness across CPUs because

it allows threads to go through nearly the same number of

rounds (i.e., run for the same number of their respective

round slices) in any time interval. To aid round balancing,

DWRR maintains a global variable, highest, as the highest

round number among all CPUs at any time. Let round(p)
be the round number of any CPU p. Whenever p’s round-

active turns empty, DWRR performs round balancing:

Step 1: If round(p) equals highest or p’s round-expired is

empty, then

(i) DWRR scans other CPUs to identify threads in round

highest or highest − 1 and currently not running

(excluding those that have finished round highest).
These threads exist in round-active of a round highest
CPU or round-active and round-expired of a round

highest − 1 CPU.

(ii) If step i finds a non-zero number of threads, DWRR

moves X of them to round-active of p, where X is

implementation-specific. Note that after all X threads

finish their round slices on p, p’s round-active turns

empty again. Thus, it will repeat Step 1 and can poten-

tially move more threads over.

(iii) If step i finds no threads, then either no runnable

threads exist or all are running, so p is free to advance

to the next round. Thus, DWRR continues to step 2.

Step 2: If p’s round-active is (still) empty, then

(i) It switches p’s round-active and round-expired, i.e., the

old round-expired becomes the new round-active and

the new round-expired becomes empty.

(ii) If the new round-active is empty, then either no

runnable thread exists or all runnable threads in the

system are already running; thus, DWRR sets p to idle

and round(p) to zero. Else, it increments round(p) by

one, which advances all local threads to the next round,

and updates highest if the new round(p) is greater.

Finally, whenever the OS creates or awakens a thread,

DWRR locates the least loaded CPU among those that are

either idle or in round highest. It then inserts the thread into

round-active of the chosen CPU. If this CPU is idle, DWRR

sets its round number to the current value of highest.

4.3.4 A-DWRR: Extending DWRR to Performance-

Asymmetric Systems

A-DWRR extends DWRR to achieve fair scheduling for

performance-asymmetric systems. First, we replace each

use of CPU time in DWRR with scaled CPU time. The

round slice of each thread remains the same. During each

round, instead of CPU time, A-DWRR monitors the scaled

CPU time of each thread. For example, for two CPUs of

ratings one and two, if a thread runs on each CPU for one

second, its total scaled CPU time is three. The scaled CPU

time progresses at a faster rate on faster CPUs. Intuitively,

if a thread spends more time on a faster CPU, it completes

more work per unit of time, but also exhausts its round slice

more quickly. Thus, A-DWRR can preempt it quickly and

move other threads to share the faster CPU fairly.

Figure 5 shows an example with four threads, A, B, C,

and D, each of weight one and round slice of one time unit.

CPU 0 has a rating of two and CPU 1 has rating one. At

time 0, A and B are in round-active of CPU 0, and C and

D are in round-active of CPU 1. At time 1, both A and B
have run for 0.5 time units, i.e., 1 unit of scaled CPU time.

Thus, they both have completed one round and A-DWRR

moves them to round-expired. Since round-active becomes

empty, CPU 0 performs round balancing and moves D over.

At this time, the scaled CPU time of both C and D is 0.5.

At time 1.25, since D has been running alone for the past

0.25 time units, its scaled CPU time becomes 1. Thus, D
moves to round-expired. CPU 0 performs round balancing

again. Since C is running, CPU 0 finds no thread to move.

It switches round-active and round-expired, and advances

to round 1. Now, with A, B, and D all competing on CPU

0, thread C’s scaled CPU time will advance faster on CPU

1, even though the CPU is slower. Thus, at some later time,

CPU 1 will perform round balancing and move threads from

CPU 0. This process continues with threads moving back

and forth in a controlled fashion, allowing every thread to

receive a fair share of the scaled CPU time. Note that, if

only thread C exists on CPU 1 at time 0, then the scaled

CPU time of A, B, and C would advance at the same rate.

Thus, both CPUs go to the next round at the same time and

A-DWRR would trigger no thread migration.

Using only scaled CPU time is insufficient if the sys-

tem is under-utilized, as Figure 6 illustrates. Assume that

all threads have weight one and a round slice of one. In
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A

D

B

Time 0: A and B start on CPU 0, C and D on CPU 1.

Time 1 (left): A and B each have run 0.5 units of real time, i.e., 1 unit of

scaled CPU time. They complete one round and move to round−expired.

Time 1 (right): CPU 0 performs round balancing and moves C over.

Time 1.25 (left): D completes one round and moves to round−expired.

Time 1.25 (right): CPU 0 has nothing to do for round balancing. So it

     switches round−active and round−expired, and advances to next round.
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Assume A, B, C, and D have weight one and round slice of one time unit,

round−active round−expired

Round 0

CPU 0

round−active

Round 0

CPU 1

round−expired

round−active round−expired
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CPU 0
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Round 0

CPU 1
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C

Time 0
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round−expired

Round 0
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Time 1
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round−expired

D
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Round 0

CPU 0

round−active

Round 0

CPU 1
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C

A
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C D C

Time 1.25

A

B

A

D

B

and CPU 0 is two times faster than CPU 1.

CPU 0 (rating = 2) CPU 1 (rating = 1)

⇒

⇒

Figure 5: Example of A-DWRR’s operation using scaled CPU time.
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(a) One thread on both fast and slow CPUs.
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(b) Two threads on a 3x faster CPU.

Figure 6: Examples of unfairness with original DWRR. All threads

have an equal weight. In both cases, B cannot utilize CPU 0.

Figure 6(a), thread A completes its round slice at time 0.5,

while B completes at time 1. In Figure 6(b), both A and C
complete their round slices at time 2/3, while B completes

at time 1. In both examples, CPU 0’s round-active turns

empty before CPU 1. When it performs round balancing in

Step 1(i), CPU 0 can never move B over since it is the only

thread on CPU 1 and is always running. Therefore, B never

gets a chance to run on the faster CPU, causing it to receive

a less amount of scaled CPU time than other threads. Note

that, it is not a problem if CPU 0 contains two threads in

Figure 6(a) and three in 6(b), in which case, it is fine for

thread B to never run on the faster CPU, since each thread

does receive an equal amount of scaled CPU time.

In general, the problem occurs when there is at most

one thread on each slow CPU and the round-active queue

of each fast CPU turns empty faster than that of each slow

CPU. When both conditions are true, we say the system is

under-utilized. To solve this problem, we extend DWRR as

follows. When CPU p performs round balancing in Step

1(i), it also scans each slow CPU and identifies CPU s for

which three conditions are true: (1) round(s) < round(p),
(2) round(s) is the minimum among all slow CPUs, and (3)

exactly one thread exists on CPU s and is running.

If Step 1(i) finds no thread to move to CPU p, we swap

two threads between CPUs p and s. First, we preempt the

current running thread, T1, on CPU s. Second, we select an

arbitrary thread, T2, from round-expired of CPU p (whose

round-active must be empty now). Finally, we move A to

round-active of CPU p and B to round-active of CPU s.

Since T2 was waiting to advance to the next round on CPU

p, after moving it to CPU s, we set the round on CPU s
to round(p) + 1. We do not change the round on CPU p,

since other threads on p still rely on it. Instead, after moving

thread T1 to CPU p, we set its round slice to (1+round(p)−
round(s)) ·w ·B, where w is p’s weight and B is the round

slice unit. This gives T1 a credit such that it can catch up

to round(p) quickly. After this first round, we reset T1’s

round slice to its normal value w · B.

5 Implementation

We used a multiprocessor system to emulate an

overlapping-ISA heterogeneous system. Our system con-

tains an Intel® S5000PAL dual-socket board, with a quad-

core Intel® Xeon® X5355 processor in one socket and a

quad-core E5440 in the other. The E5440 supports SSE4.1

instructions, whereas the X5355 does not. Using propri-

etary tools, we can adjust each core’s frequency, L2 size,
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and instruction execution width to create various heteroge-

neous configurations. We also modified the BIOS to bypass

checks that would otherwise prevent the system from boot-

ing due to processor asymmetry.

A potential difference between our system and a future

heterogeneous processor is that not all cores share a last-

level cache, which is typical in today’s multi-core designs.

Thus, thread migration could be more costly in our system.

Nevertheless, this system enables us to obtain insights into

the effectiveness of our OS designs in supporting future het-

erogeneous processors. Next, we discuss our implementa-

tion of these designs in the Linux kernel 2.6.24.

5.1 Discovering Asymmetries

Linux uses the CPUID instruction at boot time to enu-

merate features on each x86 CPU, including SSE4.1. We

extend it to construct a bitmap, where a one in bit i indicates

SSE4.1 support on CPU i and zero otherwise. Linux also

assumes a common timestamp counter (TSC) frequency

for all CPUs. It calibrates the TSC only on the BSP at

boot time and keeps global variables for the TSC frequency

(cpu khz) and cycles per nanosecond (cyc2ns scale).

Using the TSC and these variables, the scheduler performs

various timing tasks, such as process runtime accounting.

In our system, the processors have different TSC frequen-

cies and thus can cause incorrect timing in the scheduler.

We modified Linux to calibrate TSC frequency on every

CPU and maintain the variables and their operations on a

per-CPU basis. To quantify CPU ratings, we run SPEC

CPU2006* benchmarks offline for each core configuration

and use the sum of the integer and floating-point scores as

the core rating. When our system boots, we pass the rating

of each core type as a kernel boot-time argument.

5.2 Supporting Instruction-based Asymmetry

When an SSE4.1 instruction executes on one of the big

cores, the CPU generates a UD fault.

Fault handling. On a UD fault, Linux sends a SIGILL

signal to the user process by default. We modify this fault

handler to perform fault-and-migrate. To distinguish from

“normal” faults, we assume hardware support to identify

faults due to instruction-based asymmetry. For experimen-

tation purposes, our code assumes that every UD fault is due

to SSE4.1, which is the case in all of our workloads.

Migrating on a fault. Our fault handler changes the affin-

ity mask of the faulting thread to include only cores capa-

ble of SSE4.1 and allowed by its original mask. To retain

the fairness properties of A-DWRR, we select a CPU in the

highest round among those in the new mask as the destina-

tion for the thread, since CPUs in lower rounds are lagging

behind and should allow no more threads to run on. To

migrate the thread, the fault handler awakens Linux’s mi-

gration thread on the current CPU and suspends itself (i.e.,

the faulting thread). When the migration thread runs, it mi-

grates the faulting thread to the chosen destination.

Migrating back. Our first policy migrates the thread back

after it has run for T timer ticks on the new core, where T is

tunable at run time. Our second policy migrates the thread

back only after it has run for T ticks without incurring any

SSE4.1 instruction. Using past information, this policy pre-

dicts if the thread will fault and migrate again, and thus can

potentially prevent the thread from thrashing between the

big and small cores. Since existing hardware counters can-

not count SSE4.1 instructions, we program them to count all

SIMD instructions. However, all of our SSE4.1 benchmarks

frequently use SIMD instructions, such as SSE2, even when

they do not execute SSE4.1. As a result, conditions in the

second policy are rarely satisfied and threads often stay on

the new core without migrating back. Thus, we do not con-

sider this policy further and focus on the first policy.

After deciding to migrate a thread back, we restore its

affinity mask. To retain fairness for A-DWRR, we migrate

the thread to the highest round CPU among those in its affin-

ity mask and of the same type as its original core.

5.3 Supporting Performance Asymmetry

Faster-first scheduling may migrate a running thread, for

which we must ensure correct migration of the thread’s

state. We leverage the migration thread mechanism in

Linux. When an idle CPU A decides to migrate a running

thread on CPU B, it awakens the migration thread on B by

sending it an Inter-Processor Interrupt (IPI). Upon receiving

the IPI, CPU B immediately saves the state of the running

thread, switches it out, and switches the migration thread

in. Once running, the migration thread simply moves the

thread from the run queue of CPU B to that of CPU A.

We implemented A-DWRR based on the SMP DWRR

code at http://triosched.sourceforge.net.

We replaced each use of CPU time with scaled CPU time

based on the SPEC CPU2006* ratings. To achieve fairness

when the system is under-utilized, we implemented the ex-

tensions as discussed in Section 4.3.4.

6 Evaluation

Table 1 describes our benchmarks. The top three bench-

marks are single-threaded and evaluate our support for

instruction-based asymmetry. For each of them, we run two

versions, one with SSE4.1 and one without. The bottom

four are standard benchmarks with no SSE4.1 instructions;

we use them to evaluate performance asymmetry.

In addition to the ISA asymmetry (SSE4.1 support), we

modify our test system to increase the amount of perfor-

mance asymmetry. The native X5355 cores are used to em-
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Table 1: Description of the benchmarks. The top three are used to

evaluate instruction-based asymmetry.
Conv3D: 10 runs of 3D convolution of data size 512×512×512 [8].

Mandelbrot: Mandelbrot-set map evaluation of 10K×10K data [15].

FFmpeg: Conversion of a 170 MB QuickTime* movie into MPEG1

format using FFmpeg (http://www.ffmpeg.org).

SPEC OMP* V3.1: We use the medium version with reference inputs

and eight OpenMP threads.

SPECjbb2005* V1.07: We run from 1 to 16 warehouses (threads) and

report average throughput of 8 to 16 warehouses.

Kernbench v0.30: We use the parallel make benchmark to compile the

Linux 2.6.15.1 kernel source with 32 threads.

x264: We use the x264 video encoder to convert a 744 MB YUV for-

mat movie into MP4 with eight threads.

ulate big cores (8 MB L2 cache, 2.66 GHz). Using propri-

etary tools, we configure the E5440 cores to emulate small

cores with a 2 MB L2 cache and narrow execution band-

width by disallowing execution of instructions on two sets

of execution units whenever possible.

6.1 Instruction-based Asymmetry

To emulate the accelerator usage model in Section 1, we

configure the small cores with a 2 GHz frequency, resulting

in a 32% lower SPEC CPU2006* rating than the big cores.

Fault-and-migrate performance. We perform three ex-

periments for the three instruction-asymmetry benchmarks.

First, we run the non-SSE4.1 version by pinning it on a big

core, which gives the performance of running on a homo-

geneous system of big cores without SSE4.1. Second, we

run the SSE4.1 version without pinning. With faster-first

scheduling, it starts on a big core; on an SSE4.1 instruction,

it faults and migrates to a small core and later back to a big

core. Thus, the benchmark migrates back and forth between

the big and small cores, allowing us to evaluate overheads

of fault-and-migrate. As discussed in Section 5.2, fault-

and-migrate allows a thread to stay on a small core for T
timer ticks before migrating back. To evaluate the impact

of T , we repeat this experiment with T equal to 1, 2, 4, and

8, where one tick in our system is 4 ms. Finally, to emu-

late a costly design of homogeneous big cores with SSE4.1,

we re-configure each small core to have equivalent perfor-

mance to the big core. By pinning the SSE4.1 version of

each benchmark to this core, we get an upper bound for any

heterogeneous configuration with fault-and-migrate.

Figure 7 shows our results, with all data normalized to

the non-SSE4.1 case. Above the bar for each T value, we

also show its fault rate, i.e., average number of UD faults

per second; the migration rate is twice this number, since

each fault triggers two migrations. We make the following

observations from these results.

With fault-and-migrate, both Conv3D and Mandelbrot

outperform the non-SSE4.1 case. Although a small core has

a 32% lower rating, fault-and-migrate enables a speedup
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Figure 7: Performance results for fault-and-migrate.

of 1.2 for Conv3D and 2.1 for Mandelbrot over the non-

SSE4.1 case. Compared to the ideal case (homogeneous

big cores with SSE4.1), our performance is much lower. As

we show shortly, fault-and-migrate overhead is nearly zero.

The main overhead that contributes to this difference comes

from the artifact that, as we configure each small core with

a smaller frequency and cache, SSE4.1 performance is re-

duced as well. Thus, the small core cannot deliver the same

SSE4.1 performance as in the ideal case.

For Conv3D and Mandelbrot, larger T values reduce

faults, but have no performance impact. When T is one,

both have a fault rate of 250, i.e., one fault per timer tick.

Thus, each benchmark repeats this pattern: on a fault, it

migrates to a small core; after a tick, it migrates back to a

big core and faults immediately again. The same is true as

T increases. Thus, each benchmark spends nearly no time

on a big core, resulting in a constant runtime for the dif-

ferent T values. For FFmpeg, performance decreases as T
increases. Comparing its leftmost and rightmost bars re-

veals that SSE4.1 brings at most a 6% speedup. However,

a larger T value causes the benchmark to stay longer on

a small core and, consequently, a larger slowdown, which

quickly outweighs the benefit of SSE4.1. Another observa-

tion is that the fault rate stays nearly constant as T increases,

because this benchmark has so few SSE4.1 instructions that

although the total number of migrations decreases slightly

as T increases, it is too small to change the overall fault rate.

During these experiments, we found that different appli-

cations can have different sensitivity to the T value. For ex-

ample, both Conv3D and Mandelbrot stream through mem-

ory and thus thread migrations have less impact on their

performance, whereas FFmpeg is more sensitive to migra-

tions. Our code uses one tick as the default T value; future

work will explore schemes to adjust it dynamically.

Fault-and-migrate overhead. To prevent performance

asymmetry from perturbing our measurements, we config-

ured every core to have equivalent performance to the big

core. The system exhibits only instruction-based asymme-

try since only one core type support SSE4.1. We ran the

above experiments again. Figure 8 shows, for different T
values, the slowdown of each benchmark under fault-and-

migrate over pinning it on a big core with SSE4.1. With-
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Figure 8: Overhead of fault-and-migrate.

out performance asymmetry, these results indicate the over-

head of fault-and-migrate. Above each bar, we also show

the corresponding fault rate. For Conv3D and Mandel-

brot, as T increases, their number of migrations decreases

greatly, so does the fault-and-migrate overhead. For FFm-

peg, the number of migrations decreases slightly, but still

enough to lower the migration overhead, due to this bench-

mark’s cache access pattern. Finally, when T equals eight

ticks, fault-and-migrate incurs zero overhead for Conv3D

and Mandelbrot, and a 5.3% slowdown for FFmpeg.

Fault-and-migrate increases thread migrations, which

can have different impact on different applications, as we

have shown. A migration involves moving a thread from

one CPU to another and refilling caches on the new CPU.

Li et al. [20] showed that overhead of the latter often domi-

nates. Thus, we focus on it and use a microbenchmark [19]

to evaluate cache refill costs on our system with instruction-

based asymmetry but no performance asymmetry.

Our results show that, as the program working set size in-

creases, the cost to refill caches on the new CPU increases.

However, the cost is very different for migrations between

CPUs with and without a shared L2 cache. When the two

CPUs have separate caches, we observed migration costs of

up to 1.8 ms for working set size of 4 MB and 498 µs for

working set size of 512 KB. In contrast, on CPUs with a

shared L2, since the program only needs to refill the L1

after migration, the migration cost is much lower with a

maximum of only 4.1 µs for 4 MB working set size and

3.7 µs for 512 KB working set size. As the multi-core

trend continues, we expect more designs with shared caches

and thus low migration costs. Furthermore, our results are

conservative—actual cache refill costs can be much lower

due to the latency hiding capabilities of hardware prefetch-

ing and out-of-order execution in modern processors.

6.2 Performance Asymmetry

We evaluate our algorithms using a configuration with

a higher level of performance asymmetry by reducing the

small core frequency to 1 GHz, resulting in a 3.4:1 ratio in

SPEC CPU2006* ratings between the big and small cores.

We first evaluate A-DWRR’s fairness with a mi-

crobenchmark of 12 threads, each incrementing an integer

in an infinite loop, and use a modified top to monitor CPU

 PID  PR  NI  %CPU   TIME+   Work

3310  20   0   71   0:29.22  2372

3312  20   0   71   0:30.08  7733

3320  20   0   71   0:29.84  2438

3318  20   0   68   0:29.80  6663

3315  20   0   67   0:29.88  2425

3319  20   0   67   0:29.14  7473

3321  20   0   65   0:29.54  7589

3316  20   0   65   0:29.20  3327

3317  20   0   65   0:30.16  2448

3311  20   0   64   0:29.82  7636

3313  20   0   64   0:29.04  7464

3314  20   0   63   0:29.08  2360

(a) Stock Linux.

 PID  PR  NI  %CPU  %SCPU   TIME+    STIME+   Work

3321  20   0   81    146   0:29.98   1:06.03  4997

3314  20   0   80    146   0:30.52   1:05.94  4999

3325  20   0   75    152   0:30.68   1:06.10  5011

3322  20   0   70    149   0:29.10   1:06.18  4999

3318  20   0   69    146   0:29.90   1:06.01  4996

3315  20   0   68    150   0:29.78   1:06.21  5011

3319  20   0   63    147   0:29.74   1:06.02  4993

3320  20   0   62    146   0:30.22   1:06.04  5001

3317  20   0   61    148   0:30.02   1:06.32  5019

3324  20   0   61    150   0:30.26   1:06.18  5010

3323  20   0   57    148   0:28.82   1:06.08  4992

3316  20   0   52    148   0:27.90   1:06.11  4984

(b) Modified Linux.

Figure 9: Snapshots of top for 12 threads on four big and four

small cores.
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Figure 10: Speedups for various heterogeneous systems.

time allocation. Figure 9 shows our results. The last column

shows work done by each thread, where one work unit is a

million loop iterations. Figure 9a shows that stock Linux al-

locates each thread roughly equal CPU time; however, work

done by each in the same time interval is drastically differ-

ent. In Figure 9b, our top displays two extra columns:

%SCPU shows percent of scaled CPU time each thread re-

ceives in every three seconds (default top refresh interval);

STIME+ shows each thread’s cumulative scaled CPU time

since start of execution. We see that each thread receives

nearly identical scaled CPU time and their work differs at

most by 1%, demonstrating A-DWRR’s fairness.

We use the bottom four benchmarks in Table 1 to

evaluate performance and fairness. Figure 10 shows our

speedups over stock Linux for a set of configurations with

varying degrees of asymmetry by changing the small core

frequency from 2.33 to 1 GHz in 0.33 decrements. All

benchmarks except SPECjbb2005* gain higher speedups as

the small cores get slower, because faster-first scheduling

enables threads to utilize faster cores whenever possible and

this benefit increases when the relative speed of a faster

core increases. Similarly, A-DWRR enables all threads to
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Figure 11: Thread spreads in SPECjbb2005*. Our scheduler

achieves strong fairness with a maximum spread of 6%.

progress at a similar pace, preventing any one from being

a bottleneck. This benefit also increases as performance

asymmetry among the cores widens.

Our scheduler did not improve SPECjbb2005* perfor-

mance, because this benchmark measures throughput as the

total number of transactions, which is not impacted even

though some threads monopolize the big cores. However,

if each thread represents a different client, this unfairness

can seriously impact quality-of-service. SPECjbb2005* de-

fines thread spread to be (max − min)/max, where max
and min are the maximum and minimum number of trans-

actions a thread completes. Figure 11 shows the spreads of

stock Linux and our modified one from eight to sixteen to-

tal threads. With stock Linux, the maximum spread is 61%,

while ours is only 6%, demonstrating much better fairness.

7 Related Work

Prior research assumes either single or disjoint ISAs.

Our work lies in between and considers overlapping ISAs,

which we believe is more practical. For disjoint ISAs, most

manage the “different” cores as coprocessors or peripher-

als and incur high overhead when moving contexts across

address spaces. CUDA* exposes graphics processors as a

coprocessor through libraries and OS drivers [23]. Cell* of-

floads pre-defined code blocks to Synergistic Processor El-

ements [12] and EXOCHI offloads to a graphics processor

via libraries and compiler extensions [30]. These designs

place great burden on programmers, whereas we allow the

OS to transparently manage all cores as traditional CPUs.

MISP [13, 30] employs proxy execution similar to

fault-and-migrate. However, it requires hardware support.

Furthermore, any OS service request on the application-

managed cores triggers a fault and migration, whereas we

incur this overhead only on a missing instruction.

For single-ISA architectures, conventional multipro-

cessor research [1, 21] has shown that performance-

asymmetric designs achieve higher performance than cost-

equivalent homogeneous ones. Analytical models by Hill

and Marty [14] show that asymmetric multi-core designs

provide greater potential speedup than symmetric designs,

provided challenges (e.g., scheduling) can be addressed.

Traditional graph-based algorithms [4, 27, 28] are imprac-

tical due to assumptions such as a priori knowledge of task

runtime and dependencies. Figueiredo and Fortes [10] stud-

ied heterogeneous distributed shared-memory multiproces-

sors and proposed an algorithm using processor perfor-

mance ratios, similar to our CPU ratings. Their algorithm,

however, is static and not suitable for OS scheduling. Ben-

der and Rabin [6] proposed an algorithm similar to faster-

first scheduling, but applied it only to a language runtime.

Recent research has studied heterogeneous multi-core ar-

chitectures, but none addressed instruction-based asymme-

try. Kumar et al. [16, 17] proposed sampling-based schedul-

ing. DeVuyst et al. [9] studied sampling and electron poli-

cies adapting to thread execution phases. Bower et al. [7]

discussed OS scheduling challenges. All of this work used

only simulation. Balakrishnan et al. [3] implemented an

algorithm similar to faster-first scheduling, but did not ad-

dress the fairness issues. Shelepov et al. [26] proposed

scheduling using program architectural signatures. Laksh-

minarayana et al. [18] proposed task size and critical section

length aware scheduling. These designs could complement

ours to dynamically adjust CPU ratings. Prior power-related

studies [2, 11, 22] could also complement our design to

help improve both performance and power consumption.

8 Conclusion

Heterogeneous architectures provide a cost-effective so-

lution for improving both single-thread performance and

multi-thread throughput. However, they also face signif-

icant challenges in the OS design, which traditionally as-

sumes only homogeneous hardware. This paper presents

a set of algorithms that allow the OS to effectively man-

age heterogeneous CPUs. Our fault-and-migrate algorithm

enables the OS to transparently support instruction-based

asymmetry. Faster-first scheduling improves application

performance by allowing them to utilize faster cores when-

ever possible. Finally, DWRR allows applications to fairly

share CPU resources, enabling good individual application

performance and system throughput. We have implemented

these algorithms in Linux 2.6.24 and evaluated them on an

actual heterogeneous platform. Our results demonstrated

that, with incremental changes, we can modify an exist-

ing OS to effectively manage heterogeneous hardware and

achieve high performance for a wide range of applications.
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