
ACCESS: Smart Scheduling for Asymmetric Cache CMPs

Xiaowei Jiang†, Asit Mishra‡, Li Zhao†, Ravishankar Iyer†, Zhen Fang†, Sadagopan Srinivasan†,
Srihari Makineni†, Paul Brett†, Chita R. Das‡

†Intel Labs
Intel Corporation

{xiaowei.jiang, li.zhao, ravishankar.iyer}@intel.com

‡Dept. of Computer Science and Engineering
The Pennsylvania State University

{amishra, das}@cse.psu.edu

Abstract

In current Chip-multiprocessors (CMPs), a significant
portion of the die is consumed by the last-level cache. Un-
til recently, the balance of cache and core space has been
primarily guided by the needs of single applications. How-
ever, as multiple applications or virtual machines (VMs)
are consolidated on such a platform, researchers have ob-
served that not all VMs or applications require significant
amount of cache space. In order to take advantage of this
phenomenon, we explore the use of asymmetric last-level
caches in a CMP platform. While asymmetric cache CMPs
provide the benefit of reduced power and area, it is impor-
tant to build in hardware/software support to appropriately
schedule applications on to cores with suitable cache ca-
pacity. In this paper, we address this problem with our AC-
CESS architecture comprising of: (a) asymmetric caches
across a group of cores, (b) hardware support that en-
ables prediction of cache performance on the different sized
caches and (c) OS scheduler support to make use of the pre-
diction capability and appropriately schedule applications
on to core with suitable cache capacity. Measurements on a
working prototype using SPEC2006 benchmarks show that
our ACCESS architecture can effectively schedule jobs in an
asymmetric cache CMP and provide 23% performance im-
provement compared to a naive scheduler, and is 97% close
to an oracle scheduler in making schedules.

1 Introduction

Today’s chip-multiprocessors (CMPs) are already inte-
grating multiple general-purpose cores on the die. With
every successive generation, chip manufacturers are inte-
grating more and more cores. For such a scaling trend to
continue, it is important to find ways to reduce area and
power. Last-level cache space is a significant fraction (40%
or more) of the processor die area [4, 26]. Reducing last-

level cache space on the die can help improve area and
power significantly [31].

Here, we identify the fact that workloads are also chang-
ing rapidly. Nowadays, CMP platforms are employed to
run multiple virtual machines (VMs) or applications. Not
all VMs or applications require similar caching capacity.
Rather, many of the workloads have either a small work-
ing set or streaming behavior, which prevents them from
making use of a larger cache capacity. On the other hand,
applications or VMs that need a large cache space would be
affected if they are allocated with smaller caches. To tackle
this dilemma, it is natural to enforce shared caches with
cache partitioning feature (Virtual Asymmetry) or private
caches with different sizes (Physical Asymmetry) [4]. Com-
paring to virtually asymmetric caches, physically asym-
metric cache uniquely offers power/performance efficiency,
convenient chip power management and eliminates the
hardware/software complexity incurred by cache partition-
ing. Hence, we explore the use of physically asymmetric
last-level caches with the goal of reducing area and power
consumption, while maintaining competitive performance.

One key challenge with an asymmetric cache CMP de-
sign is that Operating System (OS) scheduler is unaware of
the asymmetry in cache space across the cores. As a re-
sult, a naive scheduler may end up scheduling applications
that require a large cache on a core that is connected to a
small cache. In this paper, we explore the hardware and
software required to perform asymmetry-aware scheduling.
Our proposed solution is called ACCESS, an Asymmetric
Cache CMP Enhanced with Smart Scheduling support. The
key questions that we try to address are the following:
(1) What are the benefits of building an asymmetric cache
CMP if applications can be scheduled to the most suitable
cores? (2) What hardware support would be advantageous
to help OS/hypervisors schedule effectively on the asym-
metric cache CMP? (3) What OS scheduler changes are
needed to take advantage of hardware support to achieve
the best performance?



We address these questions by designing and implement-
ing a scheduler and conduct an in-depth measurement-based
evaluation with many workloads. Overall, the contributions
of this paper are the following:

• We investigate the performance implications of physi-
cally asymmetric cache CMPs based on the observation
that there are many applications which are cache insensi-
tive and hence, scheduling these applications on cores at-
tached to smaller caches improves performance per watt.

• We describe the hardware support needed in ACCESS for
performance prediction of threads on a CMP with asym-
metric caches. This hardware support is intended to help
OS and VMM schedulers to efficiently schedule on the
asymmetric cache CMP.

• We propose asymmetry-aware OS scheduler optimiza-
tions to take advantage of the above hardware support
and achieve scheduling with minimal O(1) overhead.
With a detailed measurement-based evaluation on a 4-
core Xeon 5160 chip with asymmetric last-level caches,
we show that our scheduler based contention-mitigating
technique can achieve on average 20% speedup compar-
ing to the Linux CFS scheduler and its scheduling ac-
curacy is >97% of an asymmetric-cache aware oracle
scheduler. We also conclude that the highest impact of
contention-aware scheduling technique is not in improv-
ing performance as a whole but in minimizing the con-
tention of the shared last-level asymmetric cache.

The rest of this paper is organized as follows. Sec-
tion 2 motivates a case for asymmetric cache architectures
for general purpose CMP. Section 3 introduces our proposed
asymmetric caches architecture and presents the asymmet-
ric cache-aware OS scheduler design. Section 4 depicts the
experiment setup while Section 5 presents the results and
analysis. Section 6 discusses related work in this area and
Section 7 concludes the paper.

2 A Case for Asymmetric Caches in CMPs

In order to motivate the asymmetric caches, we present a
simple cache size sensitivity study in Figure 1. Figure 1(a)
shows the performance (in terms of CPI) degradation of
12 SPEC2006 [30] applications measured in Intel Xeon
5160 processor when the cache capacity is progressively
decreased. We find that as we progressively decrease the
last-level cache size from 4MB to 512KB, the performance
degradation for many benchmarks is not appreciable. Over-
all, out of the 12 benchmarks analyzed, 7 showed less than
10% performance degradation while the last-level cache
size is reduced from 4 MB to 512 KB. Clearly, these bench-
marks can sustain their performance even with a smaller

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

pe
rlb

en
ch

bz
ip

2

gc
c

m
cf

go
bm

k

hm
m

er

sj
en

g

h2
64

re
f

om
ne

tp
p

as
ta

r

xa
la

nc
bm

k

lib
qu

an
tu

m

N
or

m
al

iz
ed

 C
P

I (
to

 4
09

6K
B

) 4096 KB 2048 KB 1024 KB 512 KB

(a)

0
1
2
3
4
5
6

pe
rlb
en
ch

bz
ip
2

gc
c

m
cf

go
bm
k

hm
m
er

sj
en
g

h2
64
re
f

om
ne
tp
p

as
ta
r

xa
la
nc
bm
k

lib
qu
an
tu
m

N
or

m
al

iz
ed

 L
2 

En
er

gy
 (t

o 
51

2K
B

)

4096MB 2048MB 1024MB 512KB

(b)

Figure 1. (a) CPI and (b) Energy consumption
of SPEC 2006 workloads for different last-
level cache sizes. Machine parameters are
presented in Section 4.

cache size and providing a larger cache for these applica-
tion leads to cache underutilization.

There are two primary reasons behind this phenomenon:
(1) The working-set size (WSS) of the benchmark is small,
in which case the benchmark does not benefit from cache
space more than its WSS, and (2) The benchmark is stream-
ing in which case the caching reuse is very less, implying
that the cache capacity does not contribute to performance.
In our analysis, 7 out of the 12 SPEC2006 benchmarks are
cache insensitive (5 are streaming and 2 have a WSS less
than 256 KB) and performance of the remaining bench-
marks is a critical function of cache capacity. Thus, when
a number of these benchmarks are consolidated on a multi-
core platform, it makes sense to support asymmetric caches
from performance/energy perspective.

1.E-09

1.E-06

1.E-03

1.E+00

0.9 0.8 0.7 0.6 0.5 0.4
Vcc (Volts)

P
ro

ba
bi

lit
y 

of
 F

ai
lu

re

bit
byte
64B line
32KB
512KB
2MB
4MB

Figure 2. Pfail vs. VCC of SRAM arrays

The second motivation for using asymmetric caches is
that it can help improve Energy per Instruction (EPI) due
to two factors. First, power-gating a large cache when it is
idle eliminates its power consumption. This improves EPI
of the system in lightly loaded cases. The energy savings



with a smaller cache is quantified in Figure 1(b), which
shows the total energy consumption for each application.
We used Cacti 6.5 [26] for modeling the cache access en-
ergy and used on-chip counters for measuring the cache ac-
tivity. The energy numbers are normalized to the case of a
512KB cache. We find that, as the cache size increases, the
corresponding energy consumption increases significantly.
Overall, this analysis shows that, applications that have a
smaller WSS or whose performance does not improve with
increase in cache size, can benefit with a smaller cache (i.e.
the performance per Joule would be significantly better).

Figure 3. Layout of asymmetric LLC.
The second and a less obvious reason behind asymmet-

ric caches helping improve EPI lies in the fact that a smaller
cache enables a lower operating voltage for the power plane
that it belongs to. Reducing supply voltage (Vcc) is ar-
guably the most effective way to reduce the power con-
sumption of a microprocessor, since dynamic power is a
quadratic function of Vcc and leakage is an exponential
function of Vcc. However, there is a minimum supply volt-
age, Vcc min, below which the circuit no longer works re-
liably. The SRAM arrays typically have higher Vcc mins
than other blocks on a chip such as register files and compu-
tation logic. The primary reason is that with bit errors ran-
domly occurring across the chip, the high transistor count
in an SRAM array corresponds to high probability of fail-
ures. Thus, the nominal Vcc min of the cache actually de-
termines the Vcc min of the whole processor. Figure 2
shows how probability of failure (Pfail) increases as the
SRAM size of interest increases at any given Vcc. (Data
obtained from [31].) For example, assuming that Pfail of
1E-03 is needed for an acceptable manufacturing yield, then
a processor with a 512KB cache and one with a 4MB cache
would require a Vcc of 0.8V and 1V (projected) respec-
tively under this process. The above results form the basis
of our asymmetric cache CMP proposal, where we propose
that CMPs should be designed in such a way that applica-
tions do not benefit from a larger cache is scheduled on a
core with a smaller cache. Specifically, Figure 3 shows the
platform that we envision with asymmetric caches. In gen-
eral there can be multiple CPUs sharing a last level cache
that is not the same in size. Additionally, a completely
heterogeneous CMP would have different types of cores as
well. In this work, to quantify the benefits solely due to
asymmetric cache, we only consider heterogeneity in cache
capacity at the last-level.

3 ACCESS Architecture: Hardware and
Software Support

We now provide an overview of our ACCESS architec-
ture (Section 3.1) , and then discuss the details on the hard-
ware support (Section 3.2) and OS support (Section 3.3) re-
quired for achieving high performance on this architecture.

3.1 ACCESS Architecture Overview

Figure 4 provides a basic overview of the ACCESS ar-
chitecture. It shows the asymmetric cache CMP platform
with multiple cores, where a group of cores share a last-
level cache (LLC). The LLC across these groups of cores
is asymmetric in size. In this paper, we primarily focus on
two sizes (referred to as big and small). When running an
OS on such an architecture, a naive scheduler that is not
asymmetry-aware will have significant challenges in per-
formance because it may run applications with significant
cache requirements on cores attached to small LLC or vice-
versa. In order to address this problem, our ACCESS archi-
tecture provides hardware support for predicting the cache
performance of a task on each of the asymmetric cache sizes
supported in the platform. In other words, we propose an
ACCESS Prediction Engine (APE) in the last-level cache
subsystem as shown in Figure 4 that is designed to achieve
the following functionality:

• For any running task (on any core connected to any
cache), APE monitors the behavior of the running task
and provides an estimate of the performance of that
task on each of the other cache types. For example,
when a threadX is scheduled on a core attached to a
big cache, ideally, APE can provide an estimate of the
cache performance of that task if it was to run on a core
connected to a small cache.

• From an OS perspective, APE is exposed as a per-
formance monitoring capability. When the OS de-
schedules a task, it should be able to read the APE data
to determine the expected performance of that task on
the core with the other cache type.

The goal of our ACCESS architecture is to let the OS
make use of the APE data and perform smart scheduling
of applications. In other words, the OS must not have to
sample the tasks across all of the core/cache types, but just
needs to run a task on the core where it is initially spawned,
read performance data from the APE engine, and deter-
mine using smart scheduling policies (as described later).
For experimentation, our targeted system is a 4 core plat-
form, with 2 cores sharing a bigger LLC (4M) and the
other 2 cores sharing a smaller LLC (512KB). The goal of
our OS scheduler is to (1) utilize the asymmetric cache to
improve throughput and reduce power and, (2) minimize



OSOS

Task1
Task1 Task2Task2 Task3Task3 Task4

Task4

L1

Big
LLC

L1

Core

L1

Core

L1

OSOS

Task1Task1 Task2Task2 Task3Task3 Task4
Task4

L1

Taskx

Small Cache
Performance of

Taskx

L1

Tasky

Big Cache
Performance of

Tasky

Core Core

Small
LLC

Big
LLC

Small
LLCAPE

APE

Core Core

L1

Big
LLC

L1

Core

L1

Core

L1

Core Core

Small
LLCAPE APE

Figure 4. ACCESS Architecture: Overview, Hardware Support and OS Support.

shared cache contention. We compare the smart sched-
uler to an asymmetry-unaware Linux 2.6.32 completely fair
scheduler (CFS) [2] and an asymmetry-aware Oracle sched-
uler. Figure 5 shows the performance of the default Linux
scheduler as well as the Oracle scheduler on a asymmet-
ric cache CMP with no hardware prediction engine. Since
the Linux scheduler has no knowledge of asymmetric cache
platform, it blindly schedules applications on caches lead-
ing to sub-optimal performance. The Oracle scheduler on
the other hand has knowledge appropriate mapping of appli-
cations to caches that would benefit them maximally. This
helps the Oracle scheduler achieve 20% better performance
over the Linux scheduler. Our proposed scheme tries to per-
form as close as possible to such an Oracle scheduler. For
this, we require APE hardware support for predicting the
performance of a thread on the asymmetric caches. We next
detail the APE solution and the smart scheduling algorithm.

3.2 ACCESS Prediction Engine

To predict both the single-thread performance and the
contention in a cache other than the one on which a thread
is currently running, we use shadow tags array [11, 27]. A
shadow tag is functionally similar to a regular cache struc-
ture with the exception that it does not have a corresponding
data array. In our case, we use it to estimate the performance
of an application if it were to be running alone on a bigger
cache and a smaller cache. To measure the performance of
an application running alone on a 4MB and 512KB cache,
we have a shadow tag that emulates a 4MB cache and an-
other shadow tag emulating a 512KB cache. Both the LLC
and these two shadow tags receive the same memory access
stream and the shadow tags enable us to know the single
thread performance on a 4MB and 512KB cache.

Figure 6 shows the schematic diagram of 2 cores and
their corresponding shadow tags. In this schematic, the
LLC is connected to two cores and for an application run-
ning on each core. We have two shadow tags - one for mea-
suring the performance of the application on the 4MB LLC
and the other for 512KB LLC.

Use of shadow tags introduces area and energy overhead.
The number of shadow tags required is equal to the product
of the number of cores and the number of unique cache sizes
that we are interested. For instance, since we have two cores
sharing a LLC and thus, we require 4 shadow tags per LLC
(8 shadow tags in total). To minimize the area overhead
due to the introduction of shadow tags, we do set-sampling
and only maintain one set for every 256 sets in the actual
cache [32, 15]. Hence, the number of sets in the shadow tags
is 16 for 4MB 16-way cache (the 4MB LLC has 4K sets),
and 16 for 512KB 2-way cache. Thus the additional storage
overhead for 4MB shadow tag is 512B and 512KB shadow
tag is 64B. One primary justification for sampled shadow
tags to do prediction as opposed to a complete shadow tag
is that the accesses to the cache are usually uniformly dis-
tributed. We verified that the error rate of a set-sampled
shadow tag is within 2% of a complete shadow tag.

4MB 

App 1

Shadow 
Tags

Hit/Miss 
Controller

App 2

App 1 App 2

Set 0
Set 1

Set 2

Set 
4095

Way 0Tag Array Way 1 Way 15

4MB 

Set 0
Set 1

Set 16

4MB LLC

0 1 15

0 1 15 0 1 15

App 1

0 1

App 2

0 1

512 KB

Figure 6. Schematic of APE.

The shadow tags simulate the performance of the appli-
cations only during the training phase of our algorithm (de-
scribed later in Section 3.3) which is 1% of benchmarks
total run-time. Thus, the shadow tags are only accessed
during this training phase, and because of set-sampling the
number of accesses to shadow tags is 1.56% (the shadow



0
0.5

1
1.5

2
2.5

3
3.5

gc
c-g

ob
mk

mcf-
so

ple
x

bz
ip2

-h2
64

ref

mcf-
gc

c

bz
ip2

-go
bm

k

lib
qu

an
tum

-m
cf

so
ple

x-l
bm

gc
c-m

ilc

gc
c-s

jen
g

bz
ip2

-m
ilc

as
tar

-hm
mer

milc-
hm

mer

lib
qu

an
tum

-sj
en

g

hm
mer-

po
vra

y

na
md-s

jen
g

po
vra

y-l
bm Avg

W
ei

gh
te

d 
S

pe
ed

up
Linux Oracle

Figure 5. Speedup of applications using the default Linux scheduler and an Oracle scheduler.

tag has 1 set per 256 sets * 4 shadow tags per LLC) of the
total accesses during the training phase. To facilitate this,
the cache controller only forwards requests to the shadow
tags if they would be hits in the shadow tag (i.e. the shadow
tag has the particular sampled sets).

3.3 OS Scheduler Support for ACCESS

The OS scheduler is a critical piece of system soft-
ware that manages processor resource allocation to soft-
ware threads. The OS scheduler designs are typically cen-
tered on fairness [21, 20] rather than threads’ performance.
In this work, we propose a novel OS scheduler design
that seeks to improve overall system performance on the
ACCESS architecture by allocating the cache resources to
threads wisely. We call this scheduler design as ACS, an
Asymmetric Cache Scheduler. One way to improve overall
thread performance using the OS scheduler is to use train-
ing based approach. In this model, all possible thread-to-
core/cache mappings (i.e. schedules) are evaluated and the
best candidate is identified after exhaustive search [18, 19].
This incurs significant overhead. Our scheduler, however,
uses minimal training by studying an arbitrary schedule and
deriving the best schedule as follows.

To simplify our discussion, we center our explanation on
the architecture shown in Figure 3. However, our scheduler
design can be easily extended to architectures with more
number of caches. For a given threads schedule, let

MPIsum =
X

Threads on L

MPIThreadi
+

X
Threads on S

MPIThreadi

(1)

where MPI is the Misses Per Instruction of a thread.
MPIsum denotes the aggregated MPI of all threads currently
running in the system. In practice, we found that the threads
schedule that has the smallest MPIsum always leads to the
best overall performance.

In the training phase, our scheduler looks at an arbi-
trary schedule (threads are trained on cores where they are
spawned initially) and obtains the performance statistics
of each thread under this specific schedule. Performance
statistics are selectively picked using hardware performance
counters along with shadow tags. As we discussed in Sec-

tion 3.2, shadow tags enable us to get the cache miss num-
bers of a given thread when it is running alone on a large or
a small cache. Consequently, for each thread i, our sched-
uler maintains 〈MPIthreadi L, MPIthreadi S〉, where MPIthreadi L

(MPIthreadi S) is the MPI of thread i running alone on the
large (small) cache. Now the question is how best to uti-
lize such information obtained from an arbitrary schedule
to arrive at an optimal scheduling policy. We separate our
discussion into two cases, where the last level asymmetric
caches are either shared or private.

Private Cache Case. In this scenario, the last level
cache (either large or small) is exclusively used by one
thread at any given time. The obtained 〈MPIthreadi L,
MPIthreadi S〉 from one schedule can be directly used for a
different schedule, since it remains constant across different
schedules (program phase changes are handled separately
in our scheduler). We can calculate MPIsum of each pos-
sible schedule based on all 〈MPIthreadi L, MPIthreadi S〉 and
pick the schedule that yields the lowest MPIsum. In a two
threads (T1 and T2) example, the following two schedules
are compared.

1. T1 on large cache, T2 on small cache:

MPIsum = MPIT1 L + MPIT2 S;

2. T1 on small cache, T2 on large cache:

MPIsum = MPIT1 S + MPIT2 L.

Shared Cache Case. This scenario (e.g. in Figure 3, 2
cores share a cache) is more complex due to the presence
of cache contention [5, 16]. 〈MPIthreadi L, MPIthreadi S〉 ob-
tained from one schedule cannot be directly applied to other
schedules like in the private cache case, because MPI of
a thread will change when it is co-scheduled with another
thread on the same cache. Moreover, the degree of such
change may vary with respect to the thread co-scheduled.

Before discussing how our ACS scheduler handles
shared cache case, let us first introduce the Power Law of
Cache Misses [28, 9]. Mathematically, it states that if MR0

is the miss rate of a thread for a baseline cache size C0, the
miss rate (MR) for a new cache size C can be expressed as

MR = MR0(
C

C0
)−α (2)



where α is a measure of how sensitive the thread is to
changes in cache size. α is dependent on both the thread
and the underlying core architecture. However, for the same
thread running on the same core architectures (such as in
Figure 3), α can be viewed as a constant. Note that MPI
can be expressed as

MPI = L2 miss num
instruction count = MR× L2 access num

instruction count

= MR× L1 miss num
instruction count

(3)

where L1 miss num
instruction count is identical for a given thread on

both the small and large caches. Plug 3 into 2, we can
conclude that Power Law of Cache also holds for MPI, that
is

MPI = MPI0(
C

C0
)−α (4)

Recall that we obtain 〈MPIthreadi L, MPIthreadi S〉 for each
thread. Thus, α for thread i can be derived as

α = −log CL$
CS$

MPIthreadi L$

MPIthreadi S$

(5)

Given 4 and 5 together, if we know how much cache ca-
pacity will be taken away (the rest capacity can be expressed
as cache occupancy) for thread i when it is shares the cache
with another thread j, we can then derive the corresponding
〈MPIthreadi j L, MPIthreadi j S〉.

When a cache miss on thread i occurs, a new block of
thread i is brought into the shared cache, replacing an ex-
isting cache block of either thread i itself, or a block that
belongs thread j. Only when the later case happens, the
cache occupancy of thread i changes. Essentially,

Occupancythreadi j
=

miss numi × Probi replace j

miss numi × Probi replace j + miss numj × Probj replace i

(6)

Where miss num of a thread is the number of last level
cache misses when the thread runs alone on the cache. In
practice, we found that 6 can be simply estimated as

Occupancythreadi j
=

miss numi

miss numi + miss numj
(7)

In a shared cache scenario, our ACS scheduler maintains
the misses, α and MPI for each thread . With such numbers,
the adjusted MPI of when threads share the cache can be
derived. For example, to calculate the new MPI of thread
i when it shares cache with another thread j on the large
cache, we first calculate Occupancythreadi j using 7, then the
adjusted MPI can be expressed as

MPIthreadi j = MPIthreadi L$ ×Occupancythreadi j
−α (8)

Using the adjusted MPIs, the scheduler can determine
the best schedule that yields the lowest MPIsum.

O(1) ACS Scheduler. In the training phase of a thread,
all necessary performance statistics are read out and stored

along with each thread’s task struct. Once the training
phase is over, the best schedule is computed and each thread
is mapped to its best location for the sake of overall perfor-
mance. The thread then enters a long execution phase.

Recall that our ACS scheduler aims to improve system
performance by figuring out the best schedule that leads to
the smallest MPIsum. Although it avoids unnecessary train-
ing attempts, without careful design, the scheduler can in-
cur significant computation overhead due to the excessive
amount of potential schedules that need to be computed and
compared.

The naive bar in Figure 7(a) depicts the computation
overhead (in cycles) of computing and sorting out all possi-
ble schedules (O(n2) complexity) for various numbers of
threads. For 16 threads, 2ms (on a 3GHz processor) is
needed to calculate the best schedule. This is 50% of a typ-
ical OS scheduler time quantum and is clearly not accept-
able. Another concern with such a naive scheduler design
is that whenever a new thread finishes its training phase and
needs to be scheduled, a re-shuffle of entire thread-to-cache
mapping might be needed, since the new best schedule may
change significantly with respect to the old best schedule.
This is problematic in that it may entail many thread mi-
grations. For instance, to migrate a thread from the 512KB
cache to the 4MB cache, both the 4MB cache and the TLBs
(e.g. 128 entries with 4KB page size) on the corresponding
processor core have to be refilled (we ignore L1 caches and
other processor resources in this example). Assuming a sus-
tainable memory bandwidth at 12.8 GB/s, ideally this refill
will last (4MB+128*4KB)/12.8GB/s=0.35ms. This again
contributes towards roughly 9% of a typical 4ms schedule
time quantum. Such overhead becomes compounded with
unbounded number of migrations and will significantly af-
fect threads’ execution time.

To mitigate this schedule computation overhead, we pro-
pose a novel ACS scheduler that has a constant O(1) com-
putation complexity. Different than the naive scheduler
that has completely no memory of current system state (i.e.
mapping of applications to cores/caches) and picks the best
schedule by computing from scratch, our O(1) ACS sched-
uler always selects the best system state based on current
system state. Three cases of thread events are handled re-
spectively when (1) a thread arrives (i.e. it finishes training
and needs to be mapped to a proper cache/core), (2) a thread
exits or (3) a program phase change occurs. Conceptually,
phase change can alternatively be seen as an old thread ex-
its from the system and a new thread arrives. We center our
discussion on how our scheduler handles thread arrival. The
scheduler operation on thread exiting is handled similarly.

When a thread arrives, the scheduler decides where to
map the thread by comparing the following six cases (keep
in mind that number of threads on each core/cache needs to
be roughly the same to maintain fairness in terms of CPU



1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

2 4 6 8 10 12 14 16 18 20 22
Number of threads

Sc
he

du
le

r C
om

pu
ta

tio
n 

O
ve

rh
ea

d

Naive ACS

(a)

0%

1%

2%

3%

4%

2 4 6 8 10 12 14 16 18 20 22
Number of threads

Er
ro

r R
at

e

(b)

Figure 7. a. Scheduler Computation Overhead. b. ACS Accuracy in Computing Best Schedule

time a thread can get):

(1) The new thread is scheduled on the large cache;

(2) The new thread is scheduled on the large cache, and a
candidate thread from the large cache is migrated to the
small cache;

(3) The new thread is scheduled on the large cache, and a
candidate thread from the large cache is swapped with
another candidate thread from the small cache;

(4) The new thread is scheduled on the small cache;

(5) The new thread is scheduled on the small cache and a
candidate thread from the smaller cache is migrated to
the large cache;

(6) The new thread is scheduled on the small cache and a
candidate thread from the large cache is swapped with
another candidate thread from the small cache.

The scheduler then computes MPIsum for each case and
picks the best schedule that yields the smallest MPIsum. The
best candidate is updated by comparing the difference be-
tween the best schedule and the second-best schedule. In
other words, to arrive at the second best schedule, which
threads need to be migrated correspondingly. Consequently,
when a new thread arrives, the ACS scheduler always deter-
mines a best mapping to core/cache based on the current
best schedule (case 1 and 4) and second-best schedule (case
2, 3, 5 and 6). Meanwhile, the number of potential migra-
tions is also limited (3 migrations at most). To compute the
best mapping of a thread, a constant amount of computation
is needed, which explains the nature of O(1) complexity of
our ACS scheduler.

The computational overhead of our scheduler is shown in
(ACS bar) of Figure 7(a). It computes the best schedule at
magnitudes faster than the naive scheduler. Since our ACS
scheduler will not perform compute and sort for all possi-
ble schedules when a thread arrives, it may not always pick
the theoretical best schedule. Figure 7(b) depicts its accu-
racy in generating best schedules. The error rate denotes the
ranking of the schedule generated by our O(1) ACS sched-
uler within all the sorted possible schedules. Results in Fig-
ure 7(b) demonstrated that the schedule generated by ACS
scheduler is always close to (top 97%) or actually is the best
schedule.

A walk-through example: To better understand the
functioning of our scheduler, we present a walk-through ex-
ample in Figure 8. To keep this example simple, we de-
pict a case where only 2 threads (T1 and T2) are running
in the system at steady state and a new thread (T3) arrives.
With the system at steady state, T1 is scheduled on small
cache and T2 on large cache (since this minimizes MPIsum).
When T3 arrives, the scheduler computes the six possible
cases and chooses the cases where MPIsum would be small-
est. In this case, case-1 is the best schedule and hence T3 is
scheduled on large cache with no extra thread migrations.
To update the candidate threads on both caches, the sched-
uler compares the best case with the second-best case (i.e.
case-1 with case-5 in this example) and computes the min-
imum thread migrations required to reach the second-best
case from the best-case. In this example, the second best
case has T1, T2 on large cache and T3 on smaller cache; best
case has T2, T3 on large cache and T1 on smaller cache, thus
swapping T1 and T3 in case-1 would make it case-5. Hence,
candidate threads on large and small caches are T3 and T1
respectively.

4 Experimental Platform

We implemented our scheduler in Red Hat Enterprise
Linux release 5.2 with Linux 2.6.32 kernel version.

Fast thread migration methodology. In a traditional
Linux kernel, thread migration technique is designed specif-
ically for load-balancing purposes (may also be invoked
when a thread’s CPU affinity is changed). Before a core
is about to get idle, a SoftIRQ is raised by scheduler to
invoke the load balancer. When the SoftIRQ is han-
dled, a migration request is initiated. A per-core migration
thread is then waken up to handle the migration request.
The migration thread is responsible for moving the thread
to the destination core’s run queue. While this technique is
suitable for load-balancing, due to the use of SoftIRQ and
an extra migration thread, it incurs significant performance
overhead when naively applied to asymmetric cache/core
domain as such platforms typically targets for performance
using migration techniques. The overhead of migration
thread based technique cannot be easily amortized on such
platforms. To deal with it, our ACS scheduler deploys a



Thread 
Name

MPI on 
Large $

MPI on 
Small $

T1 0.40 0.50
T2 0.45 0.90

Thread 
Name

MPI on 
Large $

MPI on 
Small $

T1 0.40 0.50
T2 0.45 0.90

Thread on Large $ Thread on Small $
Candidate on 

Large $
Candidate on 

Small $ MPI on Large $ MPI on Small $ Sum of MPIs
T2 T1 T2 T1 0.45 0.50 0.95

Thread on Large $ Thread on Small $
Candidate on 

Large $
Candidate on 

Small $ MPI on Large $ MPI on Small $ Sum of MPIs
T2 T1 T2 T1 0.45 0.50 0.95

Thread T1 and T2’s MPI statistics at time t0

System state at time t0

Case MPIL MPIS SUM
1 1.05 0.50 1.55
2 0.60 1.40 2.00
3 1.00 0.90 1.90
4 0.45 1.25 1.70
5 0.85 0.75 1.60
6 0.40 1.65 2.05

Case MPIL MPIS SUM
1 1.05 0.50 1.55
2 0.60 1.40 2.00
3 1.00 0.90 1.90
4 0.45 1.25 1.70
5 0.85 0.75
6 0.40 1.65 2.05

Thread T3’s MPI statistics when it arrives at time t1

Thread 
Name

MPI on 
Large $

MPI on 
Small $

T3 0.60 0.75

Thread 
Name

MPI on 
Large $

MPI on 
Small $

T3 0.60 0.75

Scheduler computation at time t1

Thread on Large $ Thread on Small $
Candidate on 

Large $
Candidate on 

Small $ MPI on Large $ MPI on Small $ Sum of MPIs
T2,T3 T1 T3 T1 1.05 0.50 1.55

Thread on Large $ Thread on Small $
Candidate on 

Large $
Candidate on 

Small $ MPI on Large $ MPI on Small $ Sum of MPIs
1.55

System state after time t1

Figure 8. A Walk-through Example

flexible and a fast-track thread migration technique. We
modified the scheduler tick function (invoked during
each timer tick) such that it reads out a thread’s performance
statistics during the thread’s training phase, and determines
if a migration is needed. When a migration is needed, our
new scheduler function will context switch out the current
thread, pick up the next runnable candidate and migrate the
current thread to a proper destination core on the fast-path
in the scheduler code.

Table 1. IPC of benchmarks with a 4MB and
512KB LLC; S=cache sensitive, I=cache in-
sensitive.

Name 4MB 512KB Type
astar(ast) 0.752604 0.438637 S

bzip2(bzp) 1.335801 0.793942 S
gcc(gcc) 0.606141 0.407053 S

gobmk(gbk) 0.907877 0.787272 S
h264ref(264) 1.297192 1.086523 S

mcf(mcf) 0.216344 0.125643 S
omnetpp(omt) 0.354652 0.249655 S
perlbench(pbh) 1.174421 0.708547 S

soplex(sop) 0.632873 0.380203 S
sphix(spx) 0.919752 0.567493 S

hmmer(hmr) 1.048936 1.03221 I
lbm(lbm) 0.188145 0.16843 I

libquantum(lbq) 0.872071 0.873831 I
milc(mlc) 0.378481 0.37839 I

namd(nmd) 1.557044 1.500439 I
povray(pry) 1.071142 0.983982 I
sjeng(sjg) 1.021994 0.935973 I

Real-Machine Platform. Our target platform is dual-
socketed Intel Core 2 processors [1]. Each socket contains
4 cores, with each core operating at 3GHz frequency, hav-

ing a private 32KB L1 cache and an L2 cache shared by 2
cores. The L2 cache sizes are 4MB and 512KB respectively
in each socket. The corresponding architectural schematic
is shown in Figure 3.

To avoid interference to our experiment results, we run
our experiments on socket-1 and leave socket-0 up for han-
dling interrupts and running OS daemons. Since there is no
shadow tag hardware available in the system, we profile the
MPIs of each application on the 4MB and 512KB caches
offline, and pass such profiles into our ACS scheduler at the
end of each training phase of a thread. The profiling is per-
formed for 100ms at each 10s interval such that the access
to shadow tags and performance counter would take on av-
erage 1% of thread execution time. To simulate the effect of
shadow tag with set sampling, we apply an average of 2%
random errors to the profiled data.

Application Benchmarks. We used all 17 C/C++ appli-
cations from the SPEC CPU 2006 [30] suite for our exper-
iments. Table 1 shows the measurement based IPC of the
benchmarks on our experimental platform (we use acronym
for each benchmark in order to clearly represent our result).
Based on the IPC changes from a 4MB to 512KB LLC, we
categorized the applications into sensitive (S) and insensi-
tive/streaming (I) applications. For our experiments with 2
and 4 thread cases, we construct workloads that have vari-
ous combinations of S and I type benchmarks. For 2 thread
case, we create a total amount of 70 S0I2, S1I1 and S2I0
workloads, where the numbers in SxIy denote the number
of benchmarks from each type; for 4 thread case, we cre-
ate a total amount of 30 S0I4, S1I3, S2I2, S3I1 and S4I0
workloads. We start all benchmarks in each workload si-
multaneously and measure our results from the beginning



until the fastest benchmark completes.
Simulation Environment. To compare the perfor-

mance and power effectiveness of our asymmetric cache
architecture with regular symmetric cache architectures,
we use Simics full system simulator [25] with its de-
fault cache model (g cache ooo) and processor model (mi-
cro arch x86) to build an asymmetric cache platform with a
4MB and a 512KB cache (Figure 3), as well as a symmetric
cache platform that has an identical overall cache size (i.e.
(4MB+512KB)/2=2.25MB for each cache). We evaluated
single thread (all 17 benchmarks) and 2-thread cases (we
create 21 S0I2, S1I1 and S2I0 combinations), respectively.
Since not all cores are fully utilized in this comparison, we
power down one idle core on each cache and chop off half
of the cache sizes. Hence the experimented cache sizes on
the asymmetric cache are 2MB and 256KB respective, and
caches on the symmetric caches are 1.125MB. For this set
of experiments, we launch all benchmarks in a workload
simultaneously and measure for 5 billion instructions.

5 Evaluation Results

In this section, we present the evaluation results of the
proposed APE architecture and ACS scheduler. We first
show the performance and power effectiveness of asym-
metric cache architectures by comparing against an size-
equivalent traditional symmetric cache architecture, and
then show the performance effectiveness of our ACS sched-
uler by comparing against existing Linux default scheduler.

5.1 Effectiveness of Asymmetric Cache
Architecture

To compare the effectiveness of asymmetric cache ar-
chitecture against symmetric cache architecture, the major
metrics we focus on are weighted speedup for performance,
energy delay product (EDP) and energy delay2 product
(ED2P) for both performance and power considerations. We
define WS =

∑N
i=1

IPCi

i alone 512KB to be the summation of
threads’ speedup obtained when running on the given archi-
tecture compared to the case where it is running alone on a
512KB cache. In a single thread case, the OS scheduler de-
cides on which cache/core to schedule the application and
switch the other one to a deep power saving state. Com-
pared to symmetric caches, better performance is naturally
obtained on the asymmetric cache by scheduling a thread
on the large cache. Hence we do not present our data on
single thread performance comparison. Rather, we present
their obtained EDP and ED2P respectively.

Figure 9 shows the EDP of individual benchmarks when
scheduled on a symmetric (Symmetric bars) and an asym-
metric cache (Asymmetric bars). On an asymmetric cache,

0

0.2

0.4

0.6

0.8

1

as
t

bz
p

gc
c

gb
k

26
4

hm
r

lb
m lb
q

m
cf

m
lc

nm
d

om
t

pb
h

pr
y

sj
g

so
p

sp
x

Av
g

E
ne

rg
y 

D
el

ay
 P

ro
du

ct

Symmetric Asymmetric

L
L

S

S SSSSS

S

S
S

S
S

S

L

L

Figure 9. Energy Delay Product (EDP) of
benchmarks with symmetric and asymmetric
cache organization.

a wise OS scheduler can decide where to schedule an ap-
plication to achieve better EDP, either on the small cache
or on the large cache, while there is no such flexibility for
EDP optimization on a size-equivalent symmetric cache. To
highlight this artifact, in Figure 9, we show that the EDPs of
all applications are better on an asymmetric cache than on
a symmetric cache, with an average of 34% EDP reduction
in asymmetric cache. We plot on which cache the better
EDP is obtained using the L/S annotation in Figure 9. We
find that, 13 out of the 17 benchmarks achieve better EDP
on a small cache, while the 4 rest benchmarks achieve bet-
ter EDP on the large cache. This indicates the importance
of cache selection flexibility provided by the asymmetric
cache. Note that for the case of asymmetric cache, with the
given schedule plotted in Figure 9, we measured an average
of 3.6% increase in L2 cache miss numbers, which incurs a
negligible increase in DRAM power [3].

0

0.2

0.4

0.6

0.8

1

as
t

bz
p

gc
c

gb
k

26
4

hm
r

lb
m lb
q

m
cf

m
lc

nm
d

om
t

pb
h

pr
y

sj
g

so
p

sp
x

Av
g

E
ne

rg
y 

D
el

ay
 S

qu
ar

e 
P

ro
du

ct

Symmetric Asymmetric

L L L

L

L

SSSSSSS
S

S

S
S

L

Figure 10. Energy Delay2 Product (ED2P) of
benchmarks with symmetric and asymmetric
cache organization.

To give more weight to application performance, we an-
alyzed the ED2P of the applications. Figure 10 shows the
results of this analysis. We find that asymmetric cache also
achieves much better ED2P than symmetric cache in gen-
eral, with an average ED2P reduction of 33% than symmet-
ric cache. 11 out of the benchmarks arrive at better ED2P by
executing on the small cache, while the rest 6 benchmarks
have better ED2P by running on the large cache. This in turn
again demonstrates the effectiveness of asymmetric cache,



that is, it provides a fertile ground for the OS scheduler to
optimize the system performance or EDP. In contrast, tradi-
tional symmetric cache design lacks such flexibility.

0.8

0.9

1

1.1

1.2

as
t-s

op
m

cf
-s

op
bz

p-
gb

k
m

cf
-a

st
om

t-s
px

so
p-

gc
c

so
p-

sp
x

Av
g

bz
p-

pr
y

m
cf

-li
b

m
cf

-n
m

d
so

p-
nm

d
om

t-l
bq

om
t-m

lc
om

t-p
ry

Av
g

lb
q-

nm
d

m
lc

-n
m

d
pr

y-
m

lc
pr

y-
nm

d
nm

d-
lb

m
nm

d-
sj

g
lb

m
-s

jg
Av

g

Av
g-

al
l

S2I0 S1I1 S0I2

W
ei

gh
te

d 
S

pe
ed

up

Symmetric Asymmetric

Figure 11. Weighted speedup of 2-application
workloads on symmetric/asymmetric cache.

0

0.2

0.4

0.6

0.8

1

as
t-s

op
m

cf
-s

op
bz

p-
gb

k
m

cf
-a

st
om

t-s
px

so
p-

gc
c

so
p-

sp
x

Av
g

bz
p-

pr
y

m
cf

-li
b

m
cf

-n
m

d
so

p-
nm

d
om

t-l
bq

om
t-m

lc
om

t-p
ry

Av
g

lb
q-

nm
d

m
lc

-n
m

d
pr

y-
m

lc
pr

y-
nm

d
nm

d-
lb

m
nm

d-
sj

g
lb

m
-s

jg
Av

g

Av
g-

al
l

S2I0 S1I1 S0I2

E
ne

rg
y 

D
el

ay
 P

ro
du

ct Symmetric Asymmetric

Figure 12. EDP of 2-application workloads on
symmetric/asymmetric cache.

Figure 11 shows the weighted speedup of workloads that
consist of 2 benchmarks on the symmetric cache case and
the asymmetric cache case, while Figure 12 depicts the EDP
for the same set of workloads on both architectures. As we
stated earlier, the weighted speedups are calculated as the
cumulative speedups of applications with a baseline case of
512KB cache. The results obtained in the asymmetric cache
assume an oracle OS scheduler that is always able to pick
the best schedule.

As we can see from Figure 11, 12 out of the 21 repre-
sentative workloads achieve significant speedups, with an
average speedup of 8.8%; for the rest 9 workloads a negli-
gible (1.1% on average) slowdown is incurred. For the S2I0
workloads, both benchmarks are performance-sensitive to
the given cache capacity. With the asymmetric cache ar-
chitecture, one of the benchmarks would be able to achieve
performance improvement since it can be scheduled on the
large cache, while the other will be slowed down since it is
scheduled on the small cache. Because the OS scheduler is
able to manage the thread to cache mapping wisely based
on the degree of cache sensitivity, for S2I0 workloads, an
average of 3.5% speedup is obtained over symmetric cache.
Moreover, such speedup is obtained with an optimized EDP
(an average of 44% EDP reduction as shown in Figure 12).
For the S1I1 workloads, one benchmark is sensitive to the

cache while the other is not. Hence a wise OS scheduler
would always pick the cache-sensitive benchmark to run on
the large cache and leave the insensitive one on the small
cache. Thus, all 7 workloads in this group can benefit,
with an average of 10.7% speedup against symmetric cache.
Again, the speedup is obtained at an average EDP reduction
of 47%. Finally, for the S0I2 workloads, both benchmarks
are cache insensitive. Scheduling either benchmark on ei-
ther cache will have a noticeable performance impact. As a
result, for these workloads, an average of 0.7% slowdown
is incurred. However, EDP is also reduced by 23% for S0I2
benchmarks as compared to symmetric cache case.

To conclude the comparison between symmetric cache
and asymmetric cache, asymmetric caches inherently offer
the flexibility for OS schedulers to optimize thread perfor-
mance and power, while traditional symmetric caches lack
such flexibility.

5.2 Effectiveness of Asymmetric Cache
Scheduler (ACS)

To evaluate our ACS scheduler on the asymmetric cache
platform, we use the weighted speedup metric to compare
its performance with a traditional Linux default scheduler.
Again the speedups of threads are normalized to the case
when it runs alone on a 512KB cache. We first present re-
sults of workloads that consist of 2 benchmarks (2T), and
then analyze results of workloads that consist of 4 bench-
marks that run together. Note that for 2T case, each thread
uses the cache exclusively as in a private cache case, while
in the 4T case, 2 threads contend for a single cache space.

0
0.5

1
1.5

2
2.5

3
3.5

gc
c-

m
cf

-
bz

p-
m

cf
-

bz
p-

Av
g2

0

lb
q-

so
p-

gc
c-

gc
c-

bz
p-

as
t-

Av
g3

6

m
lc

-
lb

q-
hm

r-
nm

d-
pr

y-
Av

g1
4

Av
g7

0

S2I0 S1I1 S0I2

W
ei

gh
te

d 
S

pe
ed

up

Linux ACS

Figure 13. Weighted speedup of applications
with ACS (2T without cache contention).

Figure 13 plots the weighted speedup of various work-
loads that consist of 2 benchmarks running on the asym-
metric cache architecture, using either the Linux default
scheduler (Linux bars), or our ACS scheduler (ACS bars).
Note that we experimented with 20 S2I0 workloads, 36
S1I1 workloads and 14 S0I2 workloads respectively. Due
to space constrains, we show results of a few workloads in
Figure 13 and depicts the average for each group. We run
our experiments for ten times and plot the average in this
figure.



Figure 13 shows that our ACS scheduler outperforms de-
fault Linux scheduler in general for all workloads evalu-
ated, with an average speedup of 20%. In fact, with ACS
scheduler we observed performance improvement for all
70 workloads evaluated. The reason is that, given such an
architecture, it is important for the OS scheduler to have
knowledge on the underlying architecture, and information
of each thread like how they will behave on each cache. The
Linux scheduler lacks such capabilities and makes thread
schedules blindly. In contrast, our ACS scheduler takes into
account thread performance statistics at runtime and makes
a best schedule based on the statistics. The results shown
in Figure 13 also demonstrates the effectiveness of mini-
mizing overall MPI of threads in helping find out the best
performing schedule.

For the S2I0, S1I1 and S0I2 groups of workloads, the
average speedups are 16%, 28% and 5% respectively. The
higher speedup obtained by S1I1 group of workloads in-
dicates that it becomes increasingly important for the OS
scheduler to make a right decision when the workloads have
distinct performance characteristics. Note that the oracle
scheduler that uses brute-force approach to attempt all pos-
sible schedules (assuming with zero overheads) obtains an
average speedup of 23% (Figure 5), while our ACS obtained
an average speedup of 20%. This indicates that ACS sched-
uler may not always pick the best performing schedule (the
error rate is less than 3% as shown in Figure 7(b)). How-
ever, in reality an oracle scheduler cannot be implemented
at no cost. The amount of speedup it obtained will not amor-
tize the attempt overhead it made.

0
1
2
3
4
5
6
7
8

hm
r-

pr
y-

lb
q-

m
lc

lb
m

-s
jg

-p
ry

-n
m

d
m

lc
-p

ry
-lb

q-
lb

m
pr

y-
sj

g-
m

lc
-lb

m
lb

m
-h

m
r-

lb
q-

nm
d

sj
g-

hm
r-

m
lc

-n
m

d
Av

g

lb
m

-p
ry

-m
lc

-m
cf

lb
q-

pr
y-

lb
m

-o
m

t
nm

d-
pr

y-
m

lc
-b

zp
nm

d-
pr

y-
lb

q-
hm

r
26

4-
hm

r-
sj

g-
m

lc
so

p-
lb

m
-lb

q-
pr

y
Av

g

lb
q-

hm
r-

m
cf

-s
op

m
lc

-h
m

r-
m

cf
-s

op
m

lc
-p

ry
-o

m
t-g

cc
pr

y-
nm

d-
om

t-g
cc

pr
b-

bz
p-

m
lc

-p
ry

om
t-p

ry
-2

64
-n

m
d

Av
g

om
t-p

rb
-a

st
-m

lc
gc

c-
m

lc
-o

m
t-p

rb
om

t-s
op

-s
px

-s
jg

26
4-

bz
p-

gb
k-

lb
q

m
cf

-s
op

-b
zp

-lb
m

26
4-

hm
r-

sp
x-

so
p

Av
g

om
t-p

rb
-b

zp
-s

px
m

cf
-p

rb
-g

cc
-2

64
gc

c-
so

p-
m

cf
-o

m
t

gb
k-

om
t-s

px
-s

op
om

t-s
op

-2
64

-b
zp

m
cf

-s
op

-s
px

-p
rb

Av
g

Av
g-

al
l

S0I4 S1I3 S2I2 S3I1 S4I0

W
ei

gh
te

d 
S

pe
ed

up

Linux ACS

Figure 14. Weighted speedup of applications
with ACS (4T with cache contention).

Figure 14 illustrates the weighted speedup of various
workloads running on asymmetric cache platform with the
Linux scheduler (Linux) or the ACS scheduler (ACS). In
this regard, we constructed 6 workloads for each of the
5 evaluated groups. In this set of experiments, 2 bench-
marks are scheduled on 2 cores that share the same cache.
Therefore cache contention takes place. As depicted in Fig-
ure 14, our ACS scheduler again outperforms the Linux de-
fault scheduler in general, with an average speedup of 31%.
Combining the results from Figure 13 and 14 together, we

observe on average 23% performance improvement for 2T
and 4T cases on the asymmetric cache architecture. This
again demonstrates the effectiveness of our ACS scheduler.
It also demonstrates the effectiveness of our proposed MPI
under-contention model in helping find out the best per-
forming schedule. We also exhaustively searched for the
best thread schedule for each workload, and found that us-
ing the model we proposed, ACS scheduler is able to find
the best or second-best schedule in 97% cases. Another ob-
servation made from Figure 14 is that, a much higher perfor-
mance speedup (31% vs. 20%) is obtained in 4T case than
the 2T case (Figure 13). This indicates that with the increase
in the number of threads, as well as the presence of cache
contention, it becomes more important for the OS scheduler
to be aware of the underlying architecture and thread perfor-
mance characteristics to make a best performing schedule.

6 Related Work

To our best knowledge, no prior work has proposed an
OS scheduler for an asymmetric cache CMP. In this section,
we discuss the most closely related prior work in the areas
of scheduling in heterogeneous cores and in cache manage-
ment, as well as proposals on asymmetric caches.

Scheduling in Heterogeneous Cores. There are many
prior proposals that posit to leverage the core asymmetry
for performance and power improvement through schedul-
ing. Li et al. [21] proposed an OS support for heteroge-
neous architectures in which cores have asymmetric perfor-
mance and overlapping, but non-identical instruction sets.
Similarly, Saez et al. [29] proposed an asymmetric-core
scheduler design. The scheduler identifies ILP and TLP
threads and schedules them on fast cores and slow cores,
respectively. Kumar et al. [18, 19] proposed to use exhaus-
tive training approach for determining thread assignments
on asymmetric multicore processors. Our proposal differs
from these studies in that we leverage the benefits of an
asymmetric cache through OS support. We propose to use
run-time information of workloads using hardware support
and then schedule the threads on cores so as to maximize
performance.

Cache Management. Researchers [13, 14, 24, 28, 33]
have observed that cache, prefetching, memory controller,
and memory bus contention account for a high percent-
age of performance degradation that threads running on
multicore processors experience. Numerous other propos-
als exist in literature [5, 11, 12, 23, 22, 27] that propose
cache management schemes to improve performance by re-
ducing shared cache contention, minimizing miss-rates, or
to improve energy of the system as a whole. As many
of such schemes require an offline profiling being avail-
able, our scheme proposes a novel empirical model to pre-
dict the cache contention effect and improve performance



and energy in an asymmetric cache CMP. There have also
been prior proposals [6, 7, 8, 17] on leveraging OS sched-
uler to mitigate cache contention impact. These propos-
als observed that by evenly distributing workloads that ex-
hibit high and low cache miss rates to different caches, the
amount of cache contention can be reduced. The premise is
that the degree of miss rate of an application will not change
much when co-scheduled with other applications. However,
this is not always true across a broader range of workloads.
Outlier applications (such as streaming workloads) may sig-
nificantly trash the cache and change the degree of miss rate
of co-scheduled workloads.

Asymmetric and Heterogeneous Caches. Apparao et
al. [4] analyzed the implications of asymmetric caches for
server consolidated environments. Hu et al. [10] proposed
an asymmetric structure for set associative cache where the
size of each way can be different. Our proposal, however,
investigate the implications of cache size asymmetry from
performance and energy perspective leveraging OS sched-
uler support.

7 Conclusions

In this paper, we made a case for asymmetric cache CMP
design and then propose a novel scheduling scheme that
is asymmetric cache aware. With a detailed measurement-
based evaluation on a Xeon 5160 chip with asymmetric last-
level caches, we show that our scheduler based contention-
mitigating technique can achieve throughput that is within
3% of an asymmetric-cache aware oracle scheduler. We
also conclude that the highest impact of contention-aware
scheduling technique is not in improving performance of a
workload as a whole but in minimizing the contention of the
shared last-level asymmetric cache. We believe our design
is simple and complements asymmetric platforms compris-
ing of heterogeneous cores.

References

[1] Intel Xeon 5160. http://www.intel.com, 2009.
[2] Linux kernel archives. http://www.kernel.org/, 2010.
[3] Micron Technology. http://www.micron.com, 2010.
[4] P. Apparao et al. Implications of Cache Asymmetry on Server

Consolidation Performance. in IISWC, 2008.
[5] D. Chandra et al. Predicting Inter-Thread Cache Contention

on a Chip Multi-Processor Architecture. in the Proc. of Inter-
national Symposium on High Performance Computer Archi-
tecture (HPCA), 2005.

[6] A. Fedorova et al. Improving Performance Isolation on Chip
Multiprocessors via an Operating System Scheduler. in the
Proc. of International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2007.

[7] A. Fedorova et al. Managing Contention for Shared Re-
sources on Multicore Processors. Communications of the
ACM, 2008.

[8] D. Guo et al. Performance Characterization and Cache-Aware
Core Scheduling in a Virtualized Multi-Core Server under
10GbE. in IISWC’09, 2009.

[9] A. Hartstein et al. On the Nature of Cache Miss Behavior:
Is It

p
(2)? In The Journal of Instruction-Level Parallelism,

2008.
[10] Z. Hu et al. Improving Power Efficiency with an Asymmetric

Set-Associative Cache. Workshop on Memory Performance
Issues, 2001.

[11] J. Jeong et al. Cost-sensitive cache replacement algorithms.
in Proc. of the 9th International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2003.

[12] X. Jiang et al. Architecture Support for Improving Bulk
Memory Copying and Initialization Performance. In the Proc.
of the 18th Intl Conference on Parallel Architectures and
Compilation Techniques (PACT), 2009.

[13] X. Jiang et al. CHOP: Adaptive Filter-based DRAM Caching
for CMP Server Platforms. in the Proc. of the 16th Interna-
tional Symposium on High Performance Computer Architec-
ture (HPCA), 2010.

[14] X. Jiang et al. CHOP: Integrating DRAM Caches for CMP
Server Platforms. in IEEE Micro Top Picks 2010, 2010.

[15] R. Kessler et al. A comparison of trace-sampling techniques
for multi-megabyte caches. IEEE Transactions on Comput-
ers, 1994.

[16] S. Kim et al. Fair Cache Sharing and Partitioning in a Chip
Multiprocessor Architecture. in PACT, 2004.

[17] R. Knauerhase et al. Using OS Observations to Improve Per-
formance in Multi-core Systems. in IEEE Micro, 2008.

[18] R. Kumar et al. Single-ISA heterogeneous multi-core archi-
tectures: the potential for processor power reduction. in the
36th MICRO,, 2003.

[19] R. Kumar et al. Single-ISA heterogeneous multi-core ar-
chitectures for multithreaded workload performance. in the
Proc. of the 31st International Symposium on Computer Ar-
chitecture (ISCA), 2004.

[20] T. Li et al. Efficient and Scalable Multiprocessor Fair
Scheduling Using DistributedWeighted Round-Robin. in
PPoPP, 2009.

[21] T. Li et al. Operating System Support for Overlapping-ISA
Heterogeneous Multi-core Architectures. in the Proc. of the
16th International Symposium on High Performance Com-
puter Architecture (HPCA), 2010.

[22] G. Liao et al. A New IP Lookup Cache for High Performance
IP Routers. in 47th DAC, 2010.

[23] G. Liao et al. A New TCB Cache to Efficiently Manage TCP
Sessions for Web Servers. in the 6th ANCS, 2010.

[24] F. Liu et al. Understanding How Off-chip Memory Band-
width Partitioning in Chip-Multiprocessors Affects System
Performance. in Proc. of the 16th International Symposium
on High Performance Computer Architecture (HPCA), 2010.

[25] P. Magnusson et al. Simics: A Full System Simulation Plat-
form. Computer, 35(2):50.58, 2002.

[26] N. Muralimanohar et al. Optimizing NUCA organizations
and wiring Alternatives for large caches with CACTI 6.0. in
MICRO, 2007.

[27] M. Qureshi et al. Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Parti-
tion Shared Caches. in the 39th MICRO, 2006.

[28] B. Rogers et al. Scaling the Bandwidth Wall: Challenges in
and Avenues for CMP Scaling. In Proc. of Intl. Symposium
on Computer Architecture (ISCA), 2009.

[29] J. Saez et al. A Comprehensive Scheduler for Asymmetric
Multicore Systems. in EuroSys, 2010.

[30] Standard Performance Evaluation Corporation. SPEC
CPU2006 Benchmarks. http://www.spec.org/cpu2006/, 2006.

[31] C. Wilkerson et al. Trading Off Cache Capacity for Reliabil-
ity to Enable Low Voltage Operation. in Proc. of International
Symposium on Computer Architecture (ISCA), 2008.

[32] L. Zhao et al. CacheScouts: Fine-Grain Monitoring of
Shared Caches in CMP Platforms. in PACT, 2007.

[33] S. Zhuravlev et al. Addressing Shared Resource Contention
in Multicore Processors via Scheduling. in the 15th ASPLOS,
2010.


