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ABSTRACT 

Over the last decade, homogeneous multi-core processors 

emerged and became the de-facto approach for offering high 

parallelism, high performance and scalability for a wide range of 

platforms. We are now at an interesting juncture where several 

critical factors (smaller form factor devices, power challenges, 

need for specialization, etc) are guiding architects to consider 

heterogeneous chips and platforms for the next decade and 

beyond. Exploring heterogeneous architectures is challenging 

since it involves re-evaluating architecture options, OS 

implications and application development. In this paper, we 

describe these research challenges and then introduce a 

heterogeneous prototype platform called QuickIA that enables 

rapid exploration of heterogeneous architectures employing 

multiple generations of Intel processors for evaluating the 

implications of asymmetry and FPGAs to experiment with 

specialized processors or accelerators. We also show example 

case studies using the QuickIA research prototype to highlight its 

value in conducting heterogeneous architecture, OS and 

applications research.  

1. Introduction 
 

Over the last decade, multi-core processors have become the norm 

to provide high performance while staying within power 

constraints. As more cores were being integrated on the die, 

commercial operating systems are evolving to efficiently support 

the parallelism provided by multi-core processors [4]. In the 

meantime, ultra-low power small cores (e.g. Intel’s Atom 

processor [3]) have emerged and show the potential to provide 

power-efficient performance in small form factor devices where 

extended battery life is crucial. As different types of cores are now 

available, the architectural options when designing a platform are 

also better. It also introduces the possibility for developing 

heterogeneous architectures that mix and match big and small 

cores on the same die to provide a range of power/performance 

capability. In addition to big and small cores, on-die integration of 

domain-specific accelerators for special-purpose functionality like 

graphics and media processing has also become wide-spread [5]. 

Future heterogeneous architecture research now needs to 

comprehend different types of cores as well as accelerators.  
 

Heterogeneous architecture research [2, 6, 7, 8, 10, 11, 12, 13, 16] 

is challenging because it requires answers to questions such as (a) 

how many big and small cores should be supported in a platform? 

(b) what domain-specific accelerators should be introduced and 

how? (c) how should these heterogeneous processing elements be  

 
Intel and Intel logo are trademarks or registered trademarks of Intel Corporation or its 

subsidiaries in the United States and other countries. Other names and brands may be 

claimed as the property of others. 

Copyright © 2011 Intel Corporation. All rights reserved. 

managed within the platform? (d) how should workload 

partitioning be done between these processing elements? (e) how 

should different applications be scheduled by the OS on these 

processing elements? and (f) how should applications be designed 

to cope with heterogeneity? For homogeneous multi-core 

processors, it is already known that simulation approaches are 

slow and daunting to perform detailed exploration. This is 

especially true for long-running experiments such as scheduling 

and migration of workloads across processing elements. For 

heterogeneous architectures, employing a similar approach 

becomes further challenging and therefore limiting. Our goal was 

to address this challenge for heterogeneous architecture 

exploration.  
 

In this paper, we start by introducing the different types of 

heterogeneous architectures under consideration and then describe 

the research challenges in exploring the heterogeneous 

architecture options, OS implications and application 

mapping/development.  To enable realistic exploration of these 

key research challenges, we introduce a QuickIA heterogeneous 

platform prototype. The QuickIA platform consists of multiple 

Intel cores (big and small) and includes FPGAs that can be used 

to synthesize accelerators and enable experimentation for domain-

specific computation. We show three QuickIA prototype 

configurations and highlight their suitability for heterogeneous 

architecture research. Using simple case studies, we show the 

value of one of the QuickIA research vehicle configurations 

(asymmetric cores). We show that building and providing such a 

platform to architects and researchers allows them to study 

workload mapping, OS heuristics, performance/QoS and design 

space exploration. We believe this prototype platform is the first 

heterogeneous research vehicle and is currently being made 

available to selected academic groups for research purposes. 
 

The rest of this paper is organized as follows. Section 2 introduces 

the different types of heterogeneous architectures being 

considered for exploration with this research vehicle. This section 

also describes the key research challenges. Section 3 introduces 

the QuickIA research vehicle for heterogeneous architecture 

exploration. Section 4 describes a few example case studies to 

highlight the types of experiments that can be done on such a 

QuickIA platform. Section 5 summarizes the contributions in this 

paper and outlines a direction for future work. 

 

2. Heterogeneous Architecture Exploration 
 

The design space for heterogeneous architecture is vast and needs 

careful consideration in terms of power, performance, 

programmability and flexibility. In this section, we classify a few 

heterogeneous architecture configurations under exploration and 

describe the research challenges.  
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(a) Core+IP Integration                            (b) Asymmetric Core Integration                            (c) Asymmetry and Specialization 

 

Figure 1: Heterogeneous Architectures Under Exploration 
 

2.1 Types of Heterogeneous Architectures 
 

Figure 1 shows three types of heterogeneous architecture 

instances, which can be briefly described as follows: 

(a) Core+IP Integration:  One type of heterogeneous 

architecture (illustrated in Figure 1a) is to integrate multiple 

homogeneous cores with accelerators (also referred to as 

intellectual property (IP) blocks in the SoC domain). In this 

type of architecture, the IP block provides low power, high 

performance processing for specific domains. Examples 

include graphics, imaging, security, etc. 

(b) Asymmetric Core Integration: Another type of 

heterogeneous architecture configuration consists of general 

purpose cores that are asymmetric in performance and power 

characteristics. An example would be the integration of big 

(out-of-order wide-issue core) and small (in-order narrow-

issue core) cores targeted at providing performance or power 

efficiency when needed. The cores typically are based on the 

same ISA family, although could be from different 

generations. 

(c) Asymmetry+Specialization: The last type of heterogeneous 

architecture configuration consists of asymmetric as well as 

specialized cores and accelerators. Here, the key difference is 

the introduction of specialized cores used for a specific 

purpose (hardware scheduling, management, domain-specific 

computation, etc).  

As can be expected, performing simulation-based experimentation 

for these new (heterogeneous) class of architecture is not easy. 

While simulation-based experiments are still useful for micro-

architecture experiments (to determine the right features in each 

core perhaps), enabling hardware prototyping that allows for 

experimentation across the different processing elements in these 

different domains is extremely useful since it provides long 

running, rapid exploration for runtime and application studies.  

2.2 Key Research Challenges 
 

The research challenges in this area can be divided into three 

categories: (i) Architecture Exploration, (ii) OS Scheduling for 

Power/Performance/QoS, (iii) Application Partitioning and 

Mapping for Power/Performance/QoS and (iv) Heterogeneous 

programming models. 

Architecture Exploration for Performance/Power/QoS: 

Architecture exploration for a heterogeneous platform can be 

quite wide and complex to explore. The first step for such 

experiments is running a chosen set of applications on the 

processing elements of interest and understanding the trade-offs in 

terms of performance, power and QoS. Deciding which parts of 

the application will run on the big or small core, which parts will 

be offloaded to an accelerator and identifying near-optimal 

configurations across a range of target applications is the focus 

here. The ability to run these applications on existing 

heterogeneous hardware with big and small cores allows for 

detailed performance profiling to be accomplished. In addition, 

availability of FPGA in the same platform can enable better 

experimentation of new accelerators of value. 

OS Scheduling Implications: Today’s OS schedulers are 

designed to manage homogeneity. They are unaware of the 

functional, performance and/or power differences between the 

cores (big and small cores for instance). Scheduling on these types 

of heterogeneous architectures can be made efficient from a 

performance and energy perspective if we can develop techniques 

that allow us to determine which application should be scheduled 

on which core (big or small). In order to explore OS scheduling 

heuristics for heterogeneous architectures, long running 

experiments are needed – the runs have to consist of many 

contexts to understand migration overheads as well as re-

scheduling implications. A hardware platform prototype for 

heterogeneous architectures can provide rapid prototyping and 

speed up OS research and development. 

Application Partitioning and Mapping: Once a heterogeneous 

platform is developed, emerging applications need to be 

developed such that they take the different processing elements 

into consideration. For example, phases in an application that 

require high performance should be targeted to a big core and 

phases that do not require performance should be targeted to small 

cores. Similarly, specific phases that belong to the same domain 

as the accelerators available in the platform should be written 

such that they can take advantage of it. A hardware prototype 

platform enables rapid application partitioning experiments.  

Programming Model Implications: Programming the 

heterogeneous parallel platform poses several challenges – 

especially if we are dealing with accelerators and functional ISA 

differences. Today, the programmer accesses accelerators in the 

platform, treating them as devices. One drawback of this approach 

is the memory model used in the device domain. The programmer 

needs to know the custom hardware interfaces and need to 

communicate with the hardware in physical address domain 

through complex and inefficient page pinning and virtual to 

physical address translations. Another significant challenge is the 

portability of software written for one heterogeneous architecture 

instance versus another. It is important to implement built-in 

support for portability by ensuring that any code that is hardware 

accelerated can either run directly on the hardware instantiation of 

that accelerator or run seamlessly as software on a general-

purpose or specialized core. This requires support in the hardware 

for detecting existing accelerators as well as support in the 

software to implement multiple execution paths for different 

elements. Experiments on heterogeneous platforms allow for 

understanding the performance and programmability limitations 

of traditional models and allow for identifying where better 

solutions are needed. 
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(a) QIA-HC1: Xeon+FPGA                       (b) QIA-HC2: Xeon+Atom                             (c) QIA-HC3: Xeon+Atom+FPGA 

Figure 2.  QuickIA Research Vehicle: Prototype Configuration for Heterogeneous Architecture Exploration 
 

3. QuickIA: A Hetero Prototype Platform 
 

The QuickIA research platform is built and designed to provide 

the necessary heterogeneous components i.e. big cores, small 

cores and fixed function accelerators all on a single platform 

thereby allowing workload analysis in a real heterogeneous 

environment.  It should be kept in mind that a hardware prototype 

obviously has some rigid components, and therefore it should not 

be considered a full replacement to simulation or other 

approaches to emulation.  

3.1 QuickIA Hardware  
 

The QuickIA platform is based on a dual socket Xeon 5400 series 

server. These two CPU sockets are connected via the Intel Front 

Side Bus (FSB) to the memory controller hub on the platform. 

Using this as a baseline, three configurations of the platform were 

created as shown in Figure 2. These configurations allow both the 

sockets to be fully cache coherent (as necessary) with full access 

to the platform services like memory and I/O.  By using the Xeon, 

Atom and FPGA we are able to create functional, and 

performance asymmetry making it ideally suited for 

heterogeneous investigations. The three specific configurations 

will be labeled and described below as follows: 

1. QIA-HC1: Socket 0 (Xeon), Socket 1 (FPGA to prototype 

different accelerators and cores of interest) 

2. QIA-HC2:  Socket 0 (Xeon), Socket 1 (Atom N330) 

3. QIA-HC3:  Socket 0 (Xeon), Socket 1 (Atom N330 + 

FPGA) 
 

QIA-HC1 is a hetero prototype configuration in which one socket 

is a Xeon 5450 CPU and other socket is a FPGA device. The 

FPGA can be used to synthesize accelerators for “Core+IP” 

research. To get started, we implemented a soft core (P54C) 

functionally in the FPGA [17]. Although this soft core is a very 

old Pentium core configuration, we were able to expose it to the 

OS and make it behave like actual cores in real silicon, only 

difference being the slow operational speed. Experiments using 

this configuration include changing cache size, add/modify 

instructions, and modifying the CPUID so as to “spoof” the 

capabilities of the soft cores to the OS. This configuration is not 

good for benchmarking applications since the soft cores run very 

slow (~50-75MHz) when compared to the Xeon core (3GHz). The 

FPGA module can support upto four P54C cores. 

QIA-HC2 is a more balanced configuration that has a real Xeon 

5450 CPU in one socket and a real Atom N330 CPU in the other 

socket. This configuration was designed to run real workloads and 

collect data since both the big and small cores are implemented as 

real CPUs. All experimental data presented in this paper is based 

on this configuration. In the QIA-HC2 configuration, we emulate 

a heterogeneous platform in which the big and small cores run at 

the same core frequency and also have comparable cache 

hierarchies. By default, the Xeon and the Atom CPUs have very 

different FSB and cache configurations making it unsuitable to 

use as is. By modifying the motherboard, the BIOS settings, and 

the processor sockets, both configurations were made as close to 

each other as possible. 
 

Table 1: QIA-HC2 Configuration of Xeon5450+AtomN330 

Feature Xeon 5450 

(Harpertown) 

Atom N330 

(Silverthorne) 

# of Cores 2 2  

Core speed 1.60GHz 1.60GHz 

FSB speed 533MHz 533Mhz 

L1 Instr Cache  32KB 32KB 

L1 Data Cache 32KB 24KB 

L2 Cache 2MB/2cores 

(1MB/core) 

512KB/core 

Memory 

Addressability 

36bits PA 36bits PA 

HT Not Available OFF 

Prefetchers OFF OFF 

ISA Upto SSE4 Upto SSE3 

C States ON Not Available 

 

QIA-HC3 is designed to emulate specialized cores or tightly-

coupled accelerators in addition to the big and small cores. This 

configuration uses a special module that has an Atom N330 CPU 

connected to a FPGA which in turn is connected to the host 

platform Front Side Bus. This allows the Atom and the 

accelerators direct access to the memory and also allows close 

coupling between the Atom and FPGA. The Atom CPU is visible 

to the OS as if it were directly connected to the socket as in QIA-
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HC2. This platform is most suited for workloads that require 

closely coupled accelerators like crypto engines, packet inspection 

engines etc. 

3.2 QuickIA Software Support 
In this section, we introduce the various issues that system 

software and application software needs to consider when running 

on QuickIA or QuickIA-like x86 systems. These are a result of 

our experiences in bootstrapping and benchmarking the QuickIA 

platform while conducting heterogeneous asymmetric multi-

processor systems (ASMP) research. As is evident, a lot of these 

problems arise because current state-of-the-art systems software 

assumes homogeneous SMPs. Our experience has been mostly 

with the Linux operating system. However, most of these issues 

are likely to be encountered when using other operating systems 

as well. The following is a list of issues that a typical QuickIA 

user is likely to face: 

• The Linux kernel uses non-architectural features such as 

model–specific registers (MSR). One example of such a use 

is the last branch record (LBR) feature in the perf subsystem. 

When these registers need to be reset, the addresses of these 

registers are model–specific, and differ between the E5450 

and N330 processors in the QuickIA platform. The Linux 

kernel, assumes that the registers are same, thus resulting in 

machines crashing in strange ways. 

• Modern system software like eglibc provides several 

implementations for frequently used performance-critical 

functions like memcpy. However, the core on which the 

‘cpuid’ instruction is not necessarily the core on which the 

rest of the process runs. This can cause faults in the early 

user-space which can cause re-writing certain parts of core-

system software or leave out the performance on the table. 

The eglibc library has an SSE 4.1 optimized implementation 

of the above mentioned function. We encountered one such 

critical issue with udevd. To work around this, we used the 

eglibc dynamic loader’s pre-load mechanisms to always load 

a Lowest Common Denominator version of memcpy 

function. 

• The ‘alternatives’ mechanism allows Linux to take advantage 

of the advanced feature-set of newer processor while still 

supporting older hardware without recompilation. During 

build–time, the kernel stores two (or more) implementations 

of a given functionality. After discovering the platform 

capabilities at boot time, the alternative implementations are 

patched into the kernel image appropriately. Examples of 

such patching in the Linux kernel include memory barriers, 

saving and restoring the floating point state, SMP locking 

primitives, atomic operations, operations on bitmaps and pre-

fetch hints. Indeed, with heterogeneous capabilities only the 

baseline is guaranteed to work correctly. We disabled this 

mechanism on the Linux kernel for QuickIA. 

• During period of inactivity, the processor progressively shuts 

off various components and saves power and thus reduces 

energy consumption. The cpuidle driver handles the idle–

state management in the Linux kernel. The device driver 

developers can provide hints to the idle management 

subsystem about the tolerable latencies in a given device 

state. The cpuidle driver ensures that there is only one idle 

loop algorithm for all the cores in the system. However, each 

of the cores can be in a different state at any given point of 

time. The idle states are initialized only once for the BSP and 

it is assumed that the same hold true for all the cores. The 

Linux kernel that ran on our QuickIA platform could use 

only two idle-states (C0 and C1). Ideally, one would expect 

that the operating system would use per–cpu idle loops that 

are optimized for a given core architecture for maximal 

power savings and appropriate entry and exit latencies. For a 

heterogeneous system, Linux should have a cpuidle driver 

per–cpu which could be different and uses the C–states that 

are specific to the core. 

• DVFS allows for a mechanism to save power at lower clock 

frequencies (at low voltages) that result in lower power 

consumption. DVFS operating curves for the cores in a 

QuickIA-like system are different. In the Linux kernel, a 

single driver provides the mechanism for driving the various 

cores in the platform to different P–states. The governor 

mechanisms in the Linux kernel assume that the DVFS 

operating curves of all the cores in a system are the same. On 

the QuickIA system this is not a correct assumption because 

all the cores have different sets of possible P-states. We 

disabled the DVFS functionality for our initial set of 

experiments on the QuickIA system. 

• Intel Architecture processors implement a mechanism that 

can detect and report hardware errors called the Machine 

Check Architecture (MCA). To this extent they consist of 

several error–reporting register banks. Each bank is 

associated with one or more hardware units. The QuickIA 

platform consisted of cores that supported different numbers 

of MCA banks. The Linux kernel assumes that the banks 

discovered in the BSP are applicable to all the APs. In our 

software stack that ran on the QuickIA system, we disabled 

the machine check functionality. 

• The Linux kernel’s hardware-discovery process enumerates 

the bootstrap processor’s features and logically ANDs these 

features as the discovery process happens on the application 

processors. This result in the lowest common denominator 

subset of features exposed to the software. This enumeration 

mechanism prevents the use of the performance features of 

the big-cores. In our early enabling we used the lowest 

common denominator approach which left a lot of 

performance on the table. Subsequently, we enabled per-

processor feature flags to be present and used mechanisms 

like fault-and-migrate to cope with feature heterogeneity. 

 

 

Figure 3: QuickIA-HC2 configuration used for case studies 
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4. Illustrative Case Studies on QuickIA (HC2) 
 

In this section, we will now describe a few example case studies 

that illustrate the value of the heterogeneous architecture 

prototype. We focus our attention on the QuickIA-HC2 platform 

for this purpose. Figure 3 shows the configuration and Table 1 

previously showed the key parameters. 

4.1 Baselining Application Performance 
 

Comparisons of big and small cores are generally flawed because 

they are done on standalone systems which have differing 

platform configurations. Our QuickIA-HC2 platform prototype 

enables both cores at identical frequency and platform 

configuration in order to allow for more consistent comparisons. 

Figure 4 shows the performance difference between running a 

sample set of applications on big and small cores. It should be 

noted that these applications were not specifically optimized for 

one purpose or the other, so the comparison provided here should 

not be treated as benchmark results by any means. 

Figure 4 clearly shows that the performance ratio between big and 

small cores has a wide spectrum from 3.4X down to 1.2X. This 

clearly indicates that if a heterogeneous platform is designed with 

big and small cores, there is opportunity to optimize the platform 

throughput and individual performance of an application based on 

speedup observed. This also implies that hardware or software 

mechanisms that provide more insight into the behavior of the 

workload are valuable since this allows for application scheduling 

to be biased towards a small core or a big core. More research 

along these lines is on-going and such a prototyping platform 

offers great value in dynamically profiling the behavior of 

individual applications to perform these studies. 
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Figure 4. Application Performance Ratio (Big/Small) 

4.2 Hetero Throughput Improvement Potential 
 

In the last section, we showed that different applications show 

different speedup ratios on big vs. small cores available in a 

heterogeneous platform. To illustrate the throughput improvement 

potential based on this knowledge, we performed simple multi-

programming experiments.  

We chose three groups of four applications each and ran them on 

the four cores configured (2 big cores and 2 small cores). The first 

group chose two applications from each end of the x-axis on 

Figure 4. The second group chose applications from the middle, 

and the third chose at random. We ran the three groups with two 

types of affinity. The default case is labeled “w/o scheduling” and 

optimized case is labeled as “w/ scheduling”. In the “w/o 

scheduling” case, the four applications are randomly scheduled in 

the four cores, whereas in the “w/ scheduling” case, two 

applications that have smaller speedup ratio (based on Figure 4) 

are scheduled on the small cores, and the other two are scheduled 

on the big cores.      

Figure 5 shows the moderate performance benefits as a result of 

this simple policy.  The y-axis is the sum of IPC of each 

application normalized to the IPC when it is running alone on a 

big core. As shown in Figure 5, the overall improvements (height 

of each bar) ranges from 5% to 36% with simple improvements in 

affinitization. In addition, there are per application improvements 

which can be noted by comparing the sections across the two bars 

for each application. In one case (group2), one application also 

reduces in performance, so trade-offs such as those should also be 

kept in mind. The purpose of this experiment was just to highlight 

the improvement possible by efficient mapping of applications. In 

a later section we will show how OS heuristics for such purposes 

can be designed and evaluated on this platform. 
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Figure 5. Throughput and Individual Application Performance  

4.3 Hetero QoS Experiments 
 

With differing cores providing different levels of performance, it 

is possible to provide differentiated performance to applications 

based on their priority or SLA (Service Level Agreement). To 

highlight this, we ran simple experiments with affinitization to 

show the improvements in QoS that are possible. We chose three 

groups of 8 applications each. Within each group, we ran two 

experiments: w/o QoS and w/ QoS. In the experiment w/o QoS, 

we essentially allowed all applications to be scheduled on any of 

the four cores (2 big and 2 small cores). In the experiment w/ 

QoS, we chose an application (testapp1) as a high priority 

application, and affinitized it to a big core. All other applications 

were affinitized to the remaining cores. We then chose another 

application (testapp2) and do the same experiments.  

Figure 6 shows the speedup of the application when it is treated as 

high priority application (w/ QoS) compared to the base case (w/o 

QoS). As can be observed from the figure, the benefits in 

application performance ranges from 3X to 4.5X by avoiding 

contention with other applications and employing a big core for 

this high priority application. While this experiment was very 

targeted, heuristics that achieve similar QoS techniques can be 

developed and evaluated on this platform. 
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Figure 6. QoS Benefits for High Priority Applications 
 

4.4 Hetero Core Space Exploration  
When heterogeneous architecture is designed, it has more design 

options than homogenous architecture. For example, in addition 

to the tradeoff of core space vs. cache space on die, we have to 

consider the number of big cores and the number of small cores 

that should be integrated on die. To explore the core design space, 

we do some experiments to compare one architecture with 2 big 

cores and the other with 1 big core along with 2 small cores 

assuming the two small cores have the similar die space as one big 

core. Table two lists the four groups of applications that we 

choose to run. The first application is always running on the first 

big core, and the last two applications are either running on the 

other big core or two small cores. Figure 7 shows the total IPC on 

these two architecture. 

Table 2. Four groups of applications 

group1 CACTUSADM,H264REF,GOBMK

group2 CACTUSADM,LIBQUANTUM,ASTAR

group3 MCF,H264REF,SOPLEX

group4 OMNETPP,ASTAR,SOPLEX  
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Figure 7. Total IPC on 2 Xeon vs. 1 Xeon and 2 Atoms 

 

We can see that when we replace one big core with two small 

cores, there is no significant difference in total IPC for group1 and 

group3. However the IPC is increased by 12% and 10% for 

group2 and group4 respectively. This experiment just shows one 

example of core space exploration that we can perform on the 

hetero platform to help design efficient heterogeneous architecture 

for various workloads. 

 

 

4.5 Hetero OS Scheduling Heuristics  
 

With different cores providing different levels of performance, it 

is possible to dynamically schedule processes which are best 

suited to a particular core type. Such scheduling algorithms can be 

implemented in a operating system to do make online decisions or 

maximizing power, performance or a combination of both. 

Further, it is possible to create more complicated schemes which 

involve solving a discrete-time dynamic optimization problem 

(with various design parameters as constraints)to predict the best 

schedule at a given time instant. In previous work [8] we have 

proposed and implemented simple algorithms that can leverage a 

heterogeneous ASMP system to maximize performance. We 

repeated the fastest-core-first experiments on the QuickIA system 

to verify if those algorithms still hold up to their promise. This 

algorithm tries to keep the big cores always busy. First, when 

making a placement decision it will always prefer a fast core. 

Secondly, when a faster core finishes its work, it will pull running 

tasks on the smaller cores to keep the faster core busy. Figure 8 

shows the speedups gained by FCF when running 4 copies of each 

of the integer SPEC benchmarks on a 4 core QuickIA system with 

two big and two small cores. The benchmark’s runtime is the geo-

mean of all the copies’ runtimes. As can be seen, the speedup can 

be very significant. This illustrates the fact that there is a lot of 

potential for intelligent OS scheduling in ASMP systems. 

Furthermore, the scheduler can keep an account of a particular 

task’s runtime architectural characteristics (like IPC, stall metrics, 

etc) and make intelligent decisions based on it. We are currently 

working on the correct set of heuristics which will provide the 

most optimal schedule at each scheduling decision-point.  

 

Figure 8. Speedup using FCF vis-à-vis stock Linux scheduler 

5. Summary and Future Work 
 

The potential transition to heterogeneous architectures fuels 

architecture research by introducing both opportunities in 

power/performance and challenges in designing and enabling 

them in software. Exploration of heterogeneous architectures 

requires prototyping platforms since the interaction between 

applications, OS and heterogeneous hardware needs to be 

explored. In this paper, we introduced the QuickIA series of 

heterogeneous platform prototypes that serve as research vehicles 

for architects, OS researchers and applications programmers.  

We described the three QuickIA platform configurations 

(consisting of big cores, small cores and FPGA) that have already 

been developed and tested. We focused on the heterogeneous core 

configuration and highlighted a few example case studies that 
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point to further research needed and the value of such a research 

vehicle. This QuickIA configuration is being made available to a 

limited set of university research groups to help academic research 

as well as advance heterogeneous computing research in the 

architecture community. Researchers receiving the QuickIA 

platform also receive the heteroOS kernel source code under the 

GPL. We believe that this QuickIA platform is a first of its kind 

and will facilitate a growth in exploration and compelling results 

on this important and growing area of research. 

The results and discussion in this paper do not indicate any 

product ideas inside Intel Corporation. It also is not representative 

of the performance of production systems designed using the 

CPUs discussed in our prototype 
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