
 1

QuickIA: Exploring Heterogeneous Architectures on Real Prototypes

Nagabhushan Chitlur, Ganapati Srinivasa, Scott Hahn, P K Gupta, Dheeraj Reddy, David Koufaty, Paul Brett, Abirami

Prabhakaran, Li Zhao, Nelson Ijih, Suchit Subhaschandra, Sabina Grover, Xiaowei Jiang, Ravi Iyer

Intel Corporation; Contact: bhushan.chitlur@intel.com

ABSTRACT

Over the last decade, homogeneous multi-core processors

emerged and became the de-facto approach for offering high

parallelism, high performance and scalability for a wide range of

platforms. We are now at an interesting juncture where several

critical factors (smaller form factor devices, power challenges,

need for specialization, etc) are guiding architects to consider

heterogeneous chips and platforms for the next decade and

beyond. Exploring heterogeneous architectures is challenging

since it involves re-evaluating architecture options, OS

implications and application development. In this paper, we

describe these research challenges and then introduce a

heterogeneous prototype platform called QuickIA that enables

rapid exploration of heterogeneous architectures employing

multiple generations of Intel processors for evaluating the

implications of asymmetry and FPGAs to experiment with

specialized processors or accelerators. We also show example

case studies using the QuickIA research prototype to highlight its

value in conducting heterogeneous architecture, OS and

applications research.

1. Introduction

Over the last decade, multi-core processors have become the norm

to provide high performance while staying within power

constraints. As more cores were being integrated on the die,

commercial operating systems are evolving to efficiently support

the parallelism provided by multi-core processors [4]. In the

meantime, ultra-low power small cores (e.g. Intel’s Atom

processor [3]) have emerged and show the potential to provide

power-efficient performance in small form factor devices where

extended battery life is crucial. As different types of cores are now

available, the architectural options when designing a platform are

also better. It also introduces the possibility for developing

heterogeneous architectures that mix and match big and small

cores on the same die to provide a range of power/performance

capability. In addition to big and small cores, on-die integration of

domain-specific accelerators for special-purpose functionality like

graphics and media processing has also become wide-spread [5].

Future heterogeneous architecture research now needs to

comprehend different types of cores as well as accelerators.

Heterogeneous architecture research [2, 6, 7, 8, 10, 11, 12, 13, 16]

is challenging because it requires answers to questions such as (a)

how many big and small cores should be supported in a platform?

(b) what domain-specific accelerators should be introduced and

how? (c) how should these heterogeneous processing elements be

Intel and Intel logo are trademarks or registered trademarks of Intel Corporation or its

subsidiaries in the United States and other countries. Other names and brands may be

claimed as the property of others.

Copyright © 2011 Intel Corporation. All rights reserved.

managed within the platform? (d) how should workload

partitioning be done between these processing elements? (e) how

should different applications be scheduled by the OS on these

processing elements? and (f) how should applications be designed

to cope with heterogeneity? For homogeneous multi-core

processors, it is already known that simulation approaches are

slow and daunting to perform detailed exploration. This is

especially true for long-running experiments such as scheduling

and migration of workloads across processing elements. For

heterogeneous architectures, employing a similar approach

becomes further challenging and therefore limiting. Our goal was

to address this challenge for heterogeneous architecture

exploration.

In this paper, we start by introducing the different types of

heterogeneous architectures under consideration and then describe

the research challenges in exploring the heterogeneous

architecture options, OS implications and application

mapping/development. To enable realistic exploration of these

key research challenges, we introduce a QuickIA heterogeneous

platform prototype. The QuickIA platform consists of multiple

Intel cores (big and small) and includes FPGAs that can be used

to synthesize accelerators and enable experimentation for domain-

specific computation. We show three QuickIA prototype

configurations and highlight their suitability for heterogeneous

architecture research. Using simple case studies, we show the

value of one of the QuickIA research vehicle configurations

(asymmetric cores). We show that building and providing such a

platform to architects and researchers allows them to study

workload mapping, OS heuristics, performance/QoS and design

space exploration. We believe this prototype platform is the first

heterogeneous research vehicle and is currently being made

available to selected academic groups for research purposes.

The rest of this paper is organized as follows. Section 2 introduces

the different types of heterogeneous architectures being

considered for exploration with this research vehicle. This section

also describes the key research challenges. Section 3 introduces

the QuickIA research vehicle for heterogeneous architecture

exploration. Section 4 describes a few example case studies to

highlight the types of experiments that can be done on such a

QuickIA platform. Section 5 summarizes the contributions in this

paper and outlines a direction for future work.

2. Heterogeneous Architecture Exploration

The design space for heterogeneous architecture is vast and needs

careful consideration in terms of power, performance,

programmability and flexibility. In this section, we classify a few

heterogeneous architecture configurations under exploration and

describe the research challenges.

 2

Core(s) IP(s)

Interconnect /

Memory

Interconnect /

Memory

Big

Core(s)

Small

Core(s)

Interconnect /

Memory

Core(s) IP(s)
Special

Core(s)

(a) Core+IP Integration (b) Asymmetric Core Integration (c) Asymmetry and Specialization

Figure 1: Heterogeneous Architectures Under Exploration

2.1 Types of Heterogeneous Architectures

Figure 1 shows three types of heterogeneous architecture

instances, which can be briefly described as follows:

(a) Core+IP Integration: One type of heterogeneous

architecture (illustrated in Figure 1a) is to integrate multiple

homogeneous cores with accelerators (also referred to as

intellectual property (IP) blocks in the SoC domain). In this

type of architecture, the IP block provides low power, high

performance processing for specific domains. Examples

include graphics, imaging, security, etc.

(b) Asymmetric Core Integration: Another type of

heterogeneous architecture configuration consists of general

purpose cores that are asymmetric in performance and power

characteristics. An example would be the integration of big

(out-of-order wide-issue core) and small (in-order narrow-

issue core) cores targeted at providing performance or power

efficiency when needed. The cores typically are based on the

same ISA family, although could be from different

generations.

(c) Asymmetry+Specialization: The last type of heterogeneous

architecture configuration consists of asymmetric as well as

specialized cores and accelerators. Here, the key difference is

the introduction of specialized cores used for a specific

purpose (hardware scheduling, management, domain-specific

computation, etc).

As can be expected, performing simulation-based experimentation

for these new (heterogeneous) class of architecture is not easy.

While simulation-based experiments are still useful for micro-

architecture experiments (to determine the right features in each

core perhaps), enabling hardware prototyping that allows for

experimentation across the different processing elements in these

different domains is extremely useful since it provides long

running, rapid exploration for runtime and application studies.

2.2 Key Research Challenges

The research challenges in this area can be divided into three

categories: (i) Architecture Exploration, (ii) OS Scheduling for

Power/Performance/QoS, (iii) Application Partitioning and

Mapping for Power/Performance/QoS and (iv) Heterogeneous

programming models.

Architecture Exploration for Performance/Power/QoS:

Architecture exploration for a heterogeneous platform can be

quite wide and complex to explore. The first step for such

experiments is running a chosen set of applications on the

processing elements of interest and understanding the trade-offs in

terms of performance, power and QoS. Deciding which parts of

the application will run on the big or small core, which parts will

be offloaded to an accelerator and identifying near-optimal

configurations across a range of target applications is the focus

here. The ability to run these applications on existing

heterogeneous hardware with big and small cores allows for

detailed performance profiling to be accomplished. In addition,

availability of FPGA in the same platform can enable better

experimentation of new accelerators of value.

OS Scheduling Implications: Today’s OS schedulers are

designed to manage homogeneity. They are unaware of the

functional, performance and/or power differences between the

cores (big and small cores for instance). Scheduling on these types

of heterogeneous architectures can be made efficient from a

performance and energy perspective if we can develop techniques

that allow us to determine which application should be scheduled

on which core (big or small). In order to explore OS scheduling

heuristics for heterogeneous architectures, long running

experiments are needed – the runs have to consist of many

contexts to understand migration overheads as well as re-

scheduling implications. A hardware platform prototype for

heterogeneous architectures can provide rapid prototyping and

speed up OS research and development.

Application Partitioning and Mapping: Once a heterogeneous

platform is developed, emerging applications need to be

developed such that they take the different processing elements

into consideration. For example, phases in an application that

require high performance should be targeted to a big core and

phases that do not require performance should be targeted to small

cores. Similarly, specific phases that belong to the same domain

as the accelerators available in the platform should be written

such that they can take advantage of it. A hardware prototype

platform enables rapid application partitioning experiments.

Programming Model Implications: Programming the

heterogeneous parallel platform poses several challenges –

especially if we are dealing with accelerators and functional ISA

differences. Today, the programmer accesses accelerators in the

platform, treating them as devices. One drawback of this approach

is the memory model used in the device domain. The programmer

needs to know the custom hardware interfaces and need to

communicate with the hardware in physical address domain

through complex and inefficient page pinning and virtual to

physical address translations. Another significant challenge is the

portability of software written for one heterogeneous architecture

instance versus another. It is important to implement built-in

support for portability by ensuring that any code that is hardware

accelerated can either run directly on the hardware instantiation of

that accelerator or run seamlessly as software on a general-

purpose or specialized core. This requires support in the hardware

for detecting existing accelerators as well as support in the

software to implement multiple execution paths for different

elements. Experiments on heterogeneous platforms allow for

understanding the performance and programmability limitations

of traditional models and allow for identifying where better

solutions are needed.

 3

QuickIA Bensley

Platform

Xeon FSBXeon FSB

Xeon CPU
P54C in
FPGAs

QuickIA Bensley

Platform

Xeon FSB

Xeon CPU

Xeon FSB

Atom
Interposer

QuickIA Bensley

Platform

Xeon FSB

Xeon CPU

Xeon FSB

Linux

Atom+FPGA Interposer

Atom

FSB

(a) QIA-HC1: Xeon+FPGA (b) QIA-HC2: Xeon+Atom (c) QIA-HC3: Xeon+Atom+FPGA

Figure 2. QuickIA Research Vehicle: Prototype Configuration for Heterogeneous Architecture Exploration

3. QuickIA: A Hetero Prototype Platform

The QuickIA research platform is built and designed to provide

the necessary heterogeneous components i.e. big cores, small

cores and fixed function accelerators all on a single platform

thereby allowing workload analysis in a real heterogeneous

environment. It should be kept in mind that a hardware prototype

obviously has some rigid components, and therefore it should not

be considered a full replacement to simulation or other

approaches to emulation.

3.1 QuickIA Hardware

The QuickIA platform is based on a dual socket Xeon 5400 series

server. These two CPU sockets are connected via the Intel Front

Side Bus (FSB) to the memory controller hub on the platform.

Using this as a baseline, three configurations of the platform were

created as shown in Figure 2. These configurations allow both the

sockets to be fully cache coherent (as necessary) with full access

to the platform services like memory and I/O. By using the Xeon,

Atom and FPGA we are able to create functional, and

performance asymmetry making it ideally suited for

heterogeneous investigations. The three specific configurations

will be labeled and described below as follows:

1. QIA-HC1: Socket 0 (Xeon), Socket 1 (FPGA to prototype

different accelerators and cores of interest)

2. QIA-HC2: Socket 0 (Xeon), Socket 1 (Atom N330)

3. QIA-HC3: Socket 0 (Xeon), Socket 1 (Atom N330 +

FPGA)

QIA-HC1 is a hetero prototype configuration in which one socket

is a Xeon 5450 CPU and other socket is a FPGA device. The

FPGA can be used to synthesize accelerators for “Core+IP”

research. To get started, we implemented a soft core (P54C)

functionally in the FPGA [17]. Although this soft core is a very

old Pentium core configuration, we were able to expose it to the

OS and make it behave like actual cores in real silicon, only

difference being the slow operational speed. Experiments using

this configuration include changing cache size, add/modify

instructions, and modifying the CPUID so as to “spoof” the

capabilities of the soft cores to the OS. This configuration is not

good for benchmarking applications since the soft cores run very

slow (~50-75MHz) when compared to the Xeon core (3GHz). The

FPGA module can support upto four P54C cores.

QIA-HC2 is a more balanced configuration that has a real Xeon

5450 CPU in one socket and a real Atom N330 CPU in the other

socket. This configuration was designed to run real workloads and

collect data since both the big and small cores are implemented as

real CPUs. All experimental data presented in this paper is based

on this configuration. In the QIA-HC2 configuration, we emulate

a heterogeneous platform in which the big and small cores run at

the same core frequency and also have comparable cache

hierarchies. By default, the Xeon and the Atom CPUs have very

different FSB and cache configurations making it unsuitable to

use as is. By modifying the motherboard, the BIOS settings, and

the processor sockets, both configurations were made as close to

each other as possible.

Table 1: QIA-HC2 Configuration of Xeon5450+AtomN330

Feature Xeon 5450

(Harpertown)

Atom N330

(Silverthorne)

of Cores 2 2

Core speed 1.60GHz 1.60GHz

FSB speed 533MHz 533Mhz

L1 Instr Cache 32KB 32KB

L1 Data Cache 32KB 24KB

L2 Cache 2MB/2cores

(1MB/core)

512KB/core

Memory

Addressability

36bits PA 36bits PA

HT Not Available OFF

Prefetchers OFF OFF

ISA Upto SSE4 Upto SSE3

C States ON Not Available

QIA-HC3 is designed to emulate specialized cores or tightly-

coupled accelerators in addition to the big and small cores. This

configuration uses a special module that has an Atom N330 CPU

connected to a FPGA which in turn is connected to the host

platform Front Side Bus. This allows the Atom and the

accelerators direct access to the memory and also allows close

coupling between the Atom and FPGA. The Atom CPU is visible

to the OS as if it were directly connected to the socket as in QIA-

 4

HC2. This platform is most suited for workloads that require

closely coupled accelerators like crypto engines, packet inspection

engines etc.

3.2 QuickIA Software Support
In this section, we introduce the various issues that system

software and application software needs to consider when running

on QuickIA or QuickIA-like x86 systems. These are a result of

our experiences in bootstrapping and benchmarking the QuickIA

platform while conducting heterogeneous asymmetric multi-

processor systems (ASMP) research. As is evident, a lot of these

problems arise because current state-of-the-art systems software

assumes homogeneous SMPs. Our experience has been mostly

with the Linux operating system. However, most of these issues

are likely to be encountered when using other operating systems

as well. The following is a list of issues that a typical QuickIA

user is likely to face:

• The Linux kernel uses non-architectural features such as

model–specific registers (MSR). One example of such a use

is the last branch record (LBR) feature in the perf subsystem.

When these registers need to be reset, the addresses of these

registers are model–specific, and differ between the E5450

and N330 processors in the QuickIA platform. The Linux

kernel, assumes that the registers are same, thus resulting in

machines crashing in strange ways.

• Modern system software like eglibc provides several

implementations for frequently used performance-critical

functions like memcpy. However, the core on which the

‘cpuid’ instruction is not necessarily the core on which the

rest of the process runs. This can cause faults in the early

user-space which can cause re-writing certain parts of core-

system software or leave out the performance on the table.

The eglibc library has an SSE 4.1 optimized implementation

of the above mentioned function. We encountered one such

critical issue with udevd. To work around this, we used the

eglibc dynamic loader’s pre-load mechanisms to always load

a Lowest Common Denominator version of memcpy

function.

• The ‘alternatives’ mechanism allows Linux to take advantage

of the advanced feature-set of newer processor while still

supporting older hardware without recompilation. During

build–time, the kernel stores two (or more) implementations

of a given functionality. After discovering the platform

capabilities at boot time, the alternative implementations are

patched into the kernel image appropriately. Examples of

such patching in the Linux kernel include memory barriers,

saving and restoring the floating point state, SMP locking

primitives, atomic operations, operations on bitmaps and pre-

fetch hints. Indeed, with heterogeneous capabilities only the

baseline is guaranteed to work correctly. We disabled this

mechanism on the Linux kernel for QuickIA.

• During period of inactivity, the processor progressively shuts

off various components and saves power and thus reduces

energy consumption. The cpuidle driver handles the idle–

state management in the Linux kernel. The device driver

developers can provide hints to the idle management

subsystem about the tolerable latencies in a given device

state. The cpuidle driver ensures that there is only one idle

loop algorithm for all the cores in the system. However, each

of the cores can be in a different state at any given point of

time. The idle states are initialized only once for the BSP and

it is assumed that the same hold true for all the cores. The

Linux kernel that ran on our QuickIA platform could use

only two idle-states (C0 and C1). Ideally, one would expect

that the operating system would use per–cpu idle loops that

are optimized for a given core architecture for maximal

power savings and appropriate entry and exit latencies. For a

heterogeneous system, Linux should have a cpuidle driver

per–cpu which could be different and uses the C–states that

are specific to the core.

• DVFS allows for a mechanism to save power at lower clock

frequencies (at low voltages) that result in lower power

consumption. DVFS operating curves for the cores in a

QuickIA-like system are different. In the Linux kernel, a

single driver provides the mechanism for driving the various

cores in the platform to different P–states. The governor

mechanisms in the Linux kernel assume that the DVFS

operating curves of all the cores in a system are the same. On

the QuickIA system this is not a correct assumption because

all the cores have different sets of possible P-states. We

disabled the DVFS functionality for our initial set of

experiments on the QuickIA system.

• Intel Architecture processors implement a mechanism that

can detect and report hardware errors called the Machine

Check Architecture (MCA). To this extent they consist of

several error–reporting register banks. Each bank is

associated with one or more hardware units. The QuickIA

platform consisted of cores that supported different numbers

of MCA banks. The Linux kernel assumes that the banks

discovered in the BSP are applicable to all the APs. In our

software stack that ran on the QuickIA system, we disabled

the machine check functionality.

• The Linux kernel’s hardware-discovery process enumerates

the bootstrap processor’s features and logically ANDs these

features as the discovery process happens on the application

processors. This result in the lowest common denominator

subset of features exposed to the software. This enumeration

mechanism prevents the use of the performance features of

the big-cores. In our early enabling we used the lowest

common denominator approach which left a lot of

performance on the table. Subsequently, we enabled per-

processor feature flags to be present and used mechanisms

like fault-and-migrate to cope with feature heterogeneity.

Figure 3: QuickIA-HC2 configuration used for case studies

 5

4. Illustrative Case Studies on QuickIA (HC2)

In this section, we will now describe a few example case studies

that illustrate the value of the heterogeneous architecture

prototype. We focus our attention on the QuickIA-HC2 platform

for this purpose. Figure 3 shows the configuration and Table 1

previously showed the key parameters.

4.1 Baselining Application Performance

Comparisons of big and small cores are generally flawed because

they are done on standalone systems which have differing

platform configurations. Our QuickIA-HC2 platform prototype

enables both cores at identical frequency and platform

configuration in order to allow for more consistent comparisons.

Figure 4 shows the performance difference between running a

sample set of applications on big and small cores. It should be

noted that these applications were not specifically optimized for

one purpose or the other, so the comparison provided here should

not be treated as benchmark results by any means.

Figure 4 clearly shows that the performance ratio between big and

small cores has a wide spectrum from 3.4X down to 1.2X. This

clearly indicates that if a heterogeneous platform is designed with

big and small cores, there is opportunity to optimize the platform

throughput and individual performance of an application based on

speedup observed. This also implies that hardware or software

mechanisms that provide more insight into the behavior of the

workload are valuable since this allows for application scheduling

to be biased towards a small core or a big core. More research

along these lines is on-going and such a prototyping platform

offers great value in dynamically profiling the behavior of

individual applications to perform these studies.

0

0.5

1

1.5

2

2.5

3

3.5

4

4
6

4
.h

2
6

4
re

f

4
4

5
.g

o
b

m
k

4
8

2
.s

p
h

in
x3

4
8

1
.w

rf

4
6

2
.l

ib
q

u
a

n
tu

m

4
6

5
.t

o
n

to

4
0

3
.g

cc

4
3

3
.m

il
c

4
1

0
.b

w
a

v
e

s

4
7

3
.a

st
a

r

4
5

9
.G

e
m

sF
D

T
D

4
5

0
.s

o
p

le
x

4
0

1
.b

zi
p

2

4
7

1
.o

m
n

e
tp

p

4
5

8
.s

je
n

g

4
5

6
.h

m
m

e
r

4
4

7
.d

e
a

lI
I

4
1

6
.g

a
m

e
ss

4
8

3
.x

a
la

n
cb

m
k

4
0

0
.p

e
rl

b
e

n
ch

4
4

4
.n

a
m

d

4
3

5
.g

ro
m

a
cs

4
5

4
.c

a
lc

u
li

x

4
3

7
.l

e
sl

ie
3

d

4
2

9
.m

cf

4
5

3
.p

o
v

ra
y

4
3

4
.z

e
u

sm
p

4
7

0
.l

b
m

4
3

6
.c

a
ct

u
sA

D
M

P
e

rf
o

rm
a

n
ce

 R
a

ti
o

Applications Chosen

Figure 4. Application Performance Ratio (Big/Small)

4.2 Hetero Throughput Improvement Potential

In the last section, we showed that different applications show

different speedup ratios on big vs. small cores available in a

heterogeneous platform. To illustrate the throughput improvement

potential based on this knowledge, we performed simple multi-

programming experiments.

We chose three groups of four applications each and ran them on

the four cores configured (2 big cores and 2 small cores). The first

group chose two applications from each end of the x-axis on

Figure 4. The second group chose applications from the middle,

and the third chose at random. We ran the three groups with two

types of affinity. The default case is labeled “w/o scheduling” and

optimized case is labeled as “w/ scheduling”. In the “w/o

scheduling” case, the four applications are randomly scheduled in

the four cores, whereas in the “w/ scheduling” case, two

applications that have smaller speedup ratio (based on Figure 4)

are scheduled on the small cores, and the other two are scheduled

on the big cores.

Figure 5 shows the moderate performance benefits as a result of

this simple policy. The y-axis is the sum of IPC of each

application normalized to the IPC when it is running alone on a

big core. As shown in Figure 5, the overall improvements (height

of each bar) ranges from 5% to 36% with simple improvements in

affinitization. In addition, there are per application improvements

which can be noted by comparing the sections across the two bars

for each application. In one case (group2), one application also

reduces in performance, so trade-offs such as those should also be

kept in mind. The purpose of this experiment was just to highlight

the improvement possible by efficient mapping of applications. In

a later section we will show how OS heuristics for such purposes

can be designed and evaluated on this platform.

0

0.5

1

1.5

2

2.5

3

3.5

4

w/o w/ w/o w/ w/o w/

group1 group2 group3

N
o

rm
a

li
ze

d
 P

e
rf

o
rm

a
n

ce

(I
P

C
 o

v
e

r
S

ta
n

d
a

lo
n

e
)

4-application group with and without affinitized scheduling

app4

app3

app2

app1

Figure 5. Throughput and Individual Application Performance

4.3 Hetero QoS Experiments

With differing cores providing different levels of performance, it

is possible to provide differentiated performance to applications

based on their priority or SLA (Service Level Agreement). To

highlight this, we ran simple experiments with affinitization to

show the improvements in QoS that are possible. We chose three

groups of 8 applications each. Within each group, we ran two

experiments: w/o QoS and w/ QoS. In the experiment w/o QoS,

we essentially allowed all applications to be scheduled on any of

the four cores (2 big and 2 small cores). In the experiment w/

QoS, we chose an application (testapp1) as a high priority

application, and affinitized it to a big core. All other applications

were affinitized to the remaining cores. We then chose another

application (testapp2) and do the same experiments.

Figure 6 shows the speedup of the application when it is treated as

high priority application (w/ QoS) compared to the base case (w/o

QoS). As can be observed from the figure, the benefits in

application performance ranges from 3X to 4.5X by avoiding

contention with other applications and employing a big core for

this high priority application. While this experiment was very

targeted, heuristics that achieve similar QoS techniques can be

developed and evaluated on this platform.

 6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

group1 group2 group3

2

Q
o

S
 B

e
n

e
fi

t
to

 H
ig

h
 P

ri
o

ri
ty

 A
p

p
li

ca
ti

o
n

Different groups of 7 applications (testapp1 and testapp2 are the high priority applications)

testapp1

testapp2

Figure 6. QoS Benefits for High Priority Applications

4.4 Hetero Core Space Exploration
When heterogeneous architecture is designed, it has more design

options than homogenous architecture. For example, in addition

to the tradeoff of core space vs. cache space on die, we have to

consider the number of big cores and the number of small cores

that should be integrated on die. To explore the core design space,

we do some experiments to compare one architecture with 2 big

cores and the other with 1 big core along with 2 small cores

assuming the two small cores have the similar die space as one big

core. Table two lists the four groups of applications that we

choose to run. The first application is always running on the first

big core, and the last two applications are either running on the

other big core or two small cores. Figure 7 shows the total IPC on

these two architecture.

Table 2. Four groups of applications

group1 CACTUSADM,H264REF,GOBMK

group2 CACTUSADM,LIBQUANTUM,ASTAR

group3 MCF,H264REF,SOPLEX

group4 OMNETPP,ASTAR,SOPLEX

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

group1 group2 group3 group4

T
o

ta
l

IP
C

2Xeon 1Xeon+2Atom

Figure 7. Total IPC on 2 Xeon vs. 1 Xeon and 2 Atoms

We can see that when we replace one big core with two small

cores, there is no significant difference in total IPC for group1 and

group3. However the IPC is increased by 12% and 10% for

group2 and group4 respectively. This experiment just shows one

example of core space exploration that we can perform on the

hetero platform to help design efficient heterogeneous architecture

for various workloads.

4.5 Hetero OS Scheduling Heuristics

With different cores providing different levels of performance, it

is possible to dynamically schedule processes which are best

suited to a particular core type. Such scheduling algorithms can be

implemented in a operating system to do make online decisions or

maximizing power, performance or a combination of both.

Further, it is possible to create more complicated schemes which

involve solving a discrete-time dynamic optimization problem

(with various design parameters as constraints)to predict the best

schedule at a given time instant. In previous work [8] we have

proposed and implemented simple algorithms that can leverage a

heterogeneous ASMP system to maximize performance. We

repeated the fastest-core-first experiments on the QuickIA system

to verify if those algorithms still hold up to their promise. This

algorithm tries to keep the big cores always busy. First, when

making a placement decision it will always prefer a fast core.

Secondly, when a faster core finishes its work, it will pull running

tasks on the smaller cores to keep the faster core busy. Figure 8

shows the speedups gained by FCF when running 4 copies of each

of the integer SPEC benchmarks on a 4 core QuickIA system with

two big and two small cores. The benchmark’s runtime is the geo-

mean of all the copies’ runtimes. As can be seen, the speedup can

be very significant. This illustrates the fact that there is a lot of

potential for intelligent OS scheduling in ASMP systems.

Furthermore, the scheduler can keep an account of a particular

task’s runtime architectural characteristics (like IPC, stall metrics,

etc) and make intelligent decisions based on it. We are currently

working on the correct set of heuristics which will provide the

most optimal schedule at each scheduling decision-point.

Figure 8. Speedup using FCF vis-à-vis stock Linux scheduler

5. Summary and Future Work

The potential transition to heterogeneous architectures fuels

architecture research by introducing both opportunities in

power/performance and challenges in designing and enabling

them in software. Exploration of heterogeneous architectures

requires prototyping platforms since the interaction between

applications, OS and heterogeneous hardware needs to be

explored. In this paper, we introduced the QuickIA series of

heterogeneous platform prototypes that serve as research vehicles

for architects, OS researchers and applications programmers.

We described the three QuickIA platform configurations

(consisting of big cores, small cores and FPGA) that have already

been developed and tested. We focused on the heterogeneous core

configuration and highlighted a few example case studies that

 7

point to further research needed and the value of such a research

vehicle. This QuickIA configuration is being made available to a

limited set of university research groups to help academic research

as well as advance heterogeneous computing research in the

architecture community. Researchers receiving the QuickIA

platform also receive the heteroOS kernel source code under the

GPL. We believe that this QuickIA platform is a first of its kind

and will facilitate a growth in exploration and compelling results

on this important and growing area of research.

The results and discussion in this paper do not indicate any

product ideas inside Intel Corporation. It also is not representative

of the performance of production systems designed using the

CPUs discussed in our prototype

References

[1] D. Anderson, et al, “FAWN: A Fast Array of Wimpy Nodes,” Proceedings of

the ACM SIGOPS 22nd symposium on Operating systems principles (SOSP

2009), 2009

[2] J. Chen and L. K. John. Efficient Program Scheduling for Heterogeneous Multi-

core Processors. In Proceedings of Design Automation Conference, 2009.

[3] Intel® Atom™ Processor. http://www.intel.com/technology/atom/

[4] Intel® Core™2 Duo Processor.

http://www.intel.com/products/processor/core2duo/index.htm

[5] Intel’s Next-Generation Handheld Platform (“Moorestown”),

http://www.intel.com/pressroom/archive/reference/Moorestown_backgrounder.

pdf

[6] R. Kumar, K. I. Farkas, N.P. Jouppi, P. Ranganathan, D.M. Tullsen., “Single-

ISA Heterogeneous Multi-Core Architectures: The Potential for Processor

Power Reduction,” In Proceedings of the 36th International Symposium on

Microarchitecture.

[7] R. Kumar, D.M. Tullsen, P. Ranganathan, N.P. Jouppi, K. I. Farkas. “Single-

ISA Heterogeneous Multi-Core Architectures for Multithreaded Workload

Performance” In Proceedings of the 31st International Symposium on Computer

Architecture.

[8] T. Li, P. Brett, et al. Operating System Support for Overlapping-ISA

Heterogeneous Multi-core Architectures. In Proceedings of High Performance

Computer Architecture, 2010.

[9] V. Reddy, B. Lee, T. Chimbi, K. Vaid, “Web search using mobile cores:

Quantifying and mitigating the price of efficiency” ACM SIGARCH Computer

Architecture News, 2010.

[10] D Shelepov, et al, “HASS: A Scheduler for Heterogeneous Multicore Systems,”

Operating Systems Review, vol. 43, issue 2, (Special Issue on the Interaction

among the OS, Compilers, and Multicore Processors), April 2009.
[11] S. Ghiasi and D. Grunwald. Aide de camp: Asymmetric dualcore design for

power and energy reduction. In University of Colorado Technical Report CU-

CS-964-03, 2003.

[12] R. Kumar, D.M. Tullsen, N.P. Jouppi. Core Architecture Optimization for

Heterogeneous Chip Multiprocessors. In proceedings of Parallel Architectures

and Compilation Techniques, 2006.

[13] M. Becchi and P. Crowley. Dynamic Thread Assignment on Heterogeneous

Multiprocessor Architectures. In Computing Frontiers, 2006.

[14] SM10000 High Density, Low Power Server.

http://www.seamicro.com/sites/default/files/SM10000DS.pdf

[15] Standard Performance Evaluation Corporation. SPEC Benchmark Suite.

http://www.spec.org

[16] D. P. Gulati, C. Kim, S. Sethumadhavan, S. W. Keckler, and D. Burger.

Multitasking Workload Scheduling on Flexible Core Chip Multiprocessors.

ACM SIGARCH Computer Architecture News, Vol. 36, Issue 2, May 2008

[17] Qigang Wang, Rolf Kassa, Wenbo Shen, Nelson Ijih, Bhushan Chitlur, Michael

Konow, Dong Liu, Arthur Sheiman, Prabhat Gupta, “An FPGA Based Hybrid

Processor Emulation Platform,” In Proceedings of FPL'2010. pp.25~30

