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Abstract
Modern computing environments, such as enterprise data 

centers, Grids, and PlanetLab, introduce distributed services 
to address scalability, locality, and reliability. Web Services 
(WS), in particular, improve decoupling, decentralization, and 
autonomicity within distributed systems. Unfortunately, scale 
and decentralization introduce additional problems in distrib-
uted services management, such as deployment, monitoring, 
and lifecycle maintenance. 

In this paper, we propose a new approach to management 
of large scale distributed services, based on three artifacts: 
scalable publish-subscribe eventing, scalable WS-based 
deployment, and model-based management. We demonstrate 
that these techniques improve the manageability of services. In 
this way we enable service developers to focus on the develop-
ment of service functionality rather than on management fea-
tures.

1  Introduction

Contemporary computing systems are increasing in 
scale and broad deployment across the globe. This is 
true for enterprise, scientific systems, as well as con-
sumer space. Traditional centralized enterprise data cen-
ters are expanding into dozens of geographically 
dispersed data centers. Remote operations are contend-
ing with even more management complexity while also 
dealing with the emergence of hundreds of so called 
closet computers in small branch offices and home 
offices. Leveraging computation or data assets in Grid 
[1]or PlanetLab [2] environments pose similar require-
ments. As applications and services move out of the 
datacenter and into distributed installations, a new class 
of applications and services are coming about which are 
large-scale, geographically distributed, shared, and het-
erogeneous. 

This has dramatically changed the design assump-
tions for such systems and applications. Scalability is 
not limited any more by physical or administrative 
boundaries—systems span the globe and cross organiza-

tions. Availability is not driven only by private networks 
and corporate policies—many systems are connected 
over wide area network and outside of a given adminis-
trative domain. This results in a significant dynamism in 
terms of unexpected loads, rebooting and upgrading 
machines and services. 

We claim that as systems continue to grow in size 
and wide-area deployment, traditional management 
approaches, such as those currently used by OpenView 
[3], Tivoli® [4], and Unicenter® [5], will become less 
effective. The management systems are moving towards 
service oriented architectures [16] as demonstrated by 
the recent standards, such as WSDM [17] and WS-Man-
agement [18]. But, scalability, availability and dyna-
mism create additional requirements.

The features we consider essential are loose cou-
pling of the management stack (communication, deploy-
ment services, and model-based automation), 
decentralization (distribution, no central point of man-
agement), and as a result of previous two, dealing with 
incomplete knowledge. 

To demonstrate the utility of these features to scaled 
management, we created a scalable, decentralized, dis-
tributed service provisioning and management system 
which includes three significant artifacts: Planetary 
Scale Event Propagation and Router (PsEPR, pro-
nounced “pepper”) [6], an infrastructure for scalable, 
publish-subscribe eventing which scales significantly 
better than point-to-point or hierarchical topologies; 
WS-based service deployment tool [7] which decouples 
deployment specification from the dependencies and 
component models; and finally model-based automation
which enables changes to the design of the system at run 
time, enabling a higher degree of automation. 

These three artifacts enable future application 
developers to more easily to design, develop, and man-
age a distributed applications that have no deployment 
or management center (decentralized), that are geo-



graphically disperse and that adapt to changing resource 
availability and workload. We have built these three 
artifacts on the PlanetLab test bed [2], which has been 
used for the last several years for deployment and test-
ing of this class of applications. Some key learnings 
from running very large scale applications and services 
on PlanetLab align very well with our goals of decou-
pling, decentralization, and dynamism. 

Even though we do not explicitly address self-* 
characteristics in this paper, scalable management is 
closely related to much of the work in autonomic com-
puting. The two areas share a number of required and 
recommended behaviors for autonomic computing [8]. 
For example, in order to accommodate scale, manage-
ment must be fully automated, i.e. self-managed; it must 
handle problems locally whenever possible (i.e. the 
impact of a change in an area should not impact other 
services at the global scale); and scalable services’ 
behaviors and relationships must be managed so that 
they meet service level agreements. Furthermore in 
order to accomplish scalable management, underlying 
systems must implement these design patterns such as 
self-configuration, self-healing, and self-optimization. 
While in this paper we do not explicitly address these 
patterns, the topics of manageability automation, adap-
tation, performance, and dependencies are critical for 
large scale autonomic systems. In addition, scalable 
management requirements such as decoupling, decen-
tralization, and dealing with incomplete knowledge, are 
also features of autonomic systems.

1.1  Motivating Scenarios
To illuminate the required features of scalable man-

agement, we present three motivating scenarios: global 
service health, inventory; and plug-in.

Global Service Health. Consider a service that 
provides some functionality to people or computers all 
over the world, runs 24/7, is hosted at hundreds of loca-
tions that are geographically separated and which is 
made up of many interacting components. Somehow, 
the service must decide which hosts to run on, allocate 
the resources for on those hosts and then install and con-
figure itself on those hosts. The set of hosts will be con-
stantly changing because of hardware failures, network 
failures, purposeful reconfiguration of the hardware or 
network and because of malicious activity. Additionally, 
the number of hosts required by the service can change 
because of work load or new business requirements. 
Also, the number of separate components of the applica-
tion can be constantly changing and thus the installation 
and reconfiguration process is continuous.

Running on multiple, geographically disperse loca-
tions has the advantage that the service has increased 
immunity to failure and attack. But, from a management 
point of view, it is hard to know if the service is running 
correctly. This service demonstrates the extremes of 
decentralization and decoupling. So, besides the prob-
lems of deploying and configuring a decentralized 
application, there are problems of management and con-
trol. 

Global Service Inventory. Consider an installation 
of computers that spans the globe. This could be all the 
desktop computers in a multi-national corporation or all 
of the blades in a collection of data centers that have 
been geographically located around the world. Monitor-
ing and controlling all of these computers becomes diffi-
cult at some scale. Manual and semi-automatic 
management of the systems will seek solutions like run-
ning similar applications on all of the computers and 
limiting the variations in hardware configurations. How-
ever, data centers will only grow and the number of cli-
ent computers will only increase. This growth will 
require automated management and control. Because of 
unreliable monitoring systems and the network, the 
management and control feature will need to run in mul-
tiple locations.

Usual solutions are to centralize management and 
to build hierarchies of managers—clients are managed 
by low level management systems and these low-level 
managers are managed by other managers and these 
managers are controlled by a central manager. It is easy 
to see that these layers create more complexity and more 
things to manage. Additionally, managing the managers 
has the same problems as managing the low level com-
puters. In a summary, this scenario requires scalable 
communication that connects managers and other scal-
able components and automated management/control 
interface.

Global Service Plug-in. Consider a service that 
uses several services to perform its function. If there is a 
need to install this service in a new environment, a num-
ber of services that this service depends on may already 
be running, but some may not. Of the already running 
services, some of them may be the right version, but the 
others may be obsolete and a new version needs to be 
installed. 

Furthermore, the running services, with the right 
version, need to be verified for correctness of operation 
prior to installing a new service. Correctness also 
includes the service level agreements that need to be 
guaranteed for the composite service. Once everything 



is verified and all dependencies have been resolved, the 
new service needs to be “plugged-in” into existing ser-
vices, by dynamically connecting new service with 
existing services. In a summary, this scenario requires 
service discovery or the updated model of the system, 
service health monitoring, and loose and recoverable 
connection between services

The remainder of the paper is organized in the fol-
lowing manner: Section 2 motivates the paper with an 
analysis of scalability and complexity. In Section 3 we 
present related work in the area. Section 4 describes 
architecture, design, and implementation of the three 
artifacts. In Section 5 we evaluate performance of our 
solutions, followed by lessons learned in Section 6. 
Summary and future work are presented in Section 7. 

2  .Dealing with Scale and Complexity 

To further motivate the need to deal with scalability 
and complexity, we have performed two experiments. 

Discreet event simulations of centralized, hierarchi-
cal and decentralized control structures were con-
structed in order to predict the behavior at large scale of 
these control structures. These simulations, based on 
published measurements of the global Internet for 
response times [9] and packet loss [10], simulate the 
effects of TCP delays and losses on the planetary scale 
command and control structure implemented on top of 
TCP. Figure 1 shows the results obtained for a resource 
constraint of 100 simultaneous connections at each 
node, with a 3.5% probability of packet loss and with 
the TCP recovery strategy [11]. Additionally, these sim-
ulations included introducing delays due to resource 
constraints at each node and connection failures

Centralized management and control of applica-
tions were seen to suffer from significant performance 
degradation at scale, due to resource constraints and 
error rates on globally distributed networks. 

Hierarchical topologies improve the control and 
management scalability significantly, but reach limits on 
very large networks due to the cumulative effect of net-
work failure as the tree depth increases. 

Shared routing overlay networks such as PsEPR 
provide better performance on globally distributed net-
works by amortizing the overhead of maintaining opti-
mum routing architectures over many applications. 
Additionally, the use of a common command and con-
trol structure provides improved resiliency to real-world 
latencies and error rates.

Relatively speaking, improvements in latency sig-
nificantly lag improvements in bandwidth 

Figure 1.  Comparison of managing approaches: centralized, 
hierarchical (spanning tree) and publish-subscribe (simulated).

[12]. The 
impact of this is the decreasing efficiency of static, 
hiearchical communication structures and the increasing 
performance of decentralized, dynamic structures.

In the second experiment, we have compared the 
number of required changes as a result of a reconfigura-
tion or failure. We have evaluated the number of 
changes as a function of service complexity and scale. 
We looked at system changes in response to dynamic 
events for a simple application - a JPetStore application, 
a medium complex   application - a local content pro-
vider and a complex application - an airline reservation 
system running in multiple countries in different lan-
guages. Our analysis of system changes in response to 
dynamic events exhibits the challenges faced in design-
ing automated management services with an ever 
increasing complexity of systems. 

The dynamic events introduced are those of appli-
cation server failures, and addition of new application 
servers. The higher level dynamic events result in sev-
eral subsequent changes within the system. This is 
attributed to the complex interdependencies that exists 
among the system components. As can be seen from the 
graph presented in Figure 2, the number of needed sys-
tem changes grow exponentially with an increase in 
complexity. The problem becomes even more challeng-
ing in very large scale systems wherein management 
services are decentralized and have to make decisions 
based on incomplete knowledge. The graphs illustrate a 
very critical problem, that of designing automated man-
agement services that can deal with an ever increasing 
complexity of the system.



Figure 2. A Number of Complex Service Changes as a function 
of scale & Complexity. The scale is shown with respect to num-
ber of app servers which are affected by the dynamic event.

Our approach to handling this complexity is to 
model applications and services and multiple loosely 
connected components. The information model infra-
structure captures the current state of the system. When-
ever dynamic events occur, they are propagated to the 
information models. The information models are then 
reasoned upon by adaptation management services to 
determine the low level system changes that needs to be 
implemented in the system. These changes are then exe-
cuted within the system. Other management services 
that rely on system knowledge, for example, monitoring 
services, only need to refer to the updated information 
model to obtain updated current system state.

3  Related Work

Our work on scalable management draws a lot of 
similarities with work in many areas. While we leverage 
the existing experience, we are different in that our pri-
mary focus is on the very large scale, global services. In 
particular, we base our work on service oriented archi-
tectures, but in order to accomplish the scale, we are 
required to adopt autonomic techniques.

PsEPR is similar in concept to publish/subscribe 
systems. These range from Java Message Service [22] to 
TIBCO Corporation’s Rendezvous [23]. PsEPR differs 
from these by dynamically creating communication 
points dynamically so event senders and receivers have 
minimal dependencies. PsEPR’s overlay routing is also 
opaque thus allowing services to adapt to it’s structure -- 
for instance, moving computation “close” to data 
sources. This sort of messaging structure is also being 
explored in Astrolabe[24]. There are also many other 
examples of publish subscribe co-ordination and com-
munication efforts [25, 26, 27, 28].

Figure 3.  High Level Architecture
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In terms of related work in the area of application 
management systems, several deployment tools exist. 
Deployme system for package management and deploy-
ment supports creation of the package, distribution, 
installation, and deleting old unused packages from 
remote hosts [30]. Kramer et al. describe CONIC, a lan-
guage specifically designed for system description, con-
struction, and evolution [31]. Cfengine provides an 
autonomous agent and a middle to high level policy lan-
guage for building expert systems which administrate 
and configure large computer systems[32]. 

Existing management solutions similarly address 
functionalities in other areas of our interest, e.g., adapta-
tion to failures and to performance violations ([3], [4], 
[5]). The effectiveness of these traditional solutions in 
large distributed systems is significantly reduced by a 
number of properties of these solutions. These are cen-
tralized control, tight coupling, non-adaptivity, semi-
automation. Furthermore, these solutions do not ade-
quately address the needs and characteristics of large-
scale distributed services. Most of the tools do not by 
themselves provide complete lifecycle management 
capability necessary in large dynamic systems such as 
Planetlab. 

In contrast, we are designing our management sys-
tem by leveraging scalable technologies, some of which 
are mentioned in this section, e.g., publish-subscribe, 
decentralized agents and control, decentralized decision 
making, and extending them further to the next level of 
very large scale global services. We provide solutions 
for deployment, eventing, and adaptation for services 
lifecycle management. We also propose higher level 
abstractions for service and system descriptions through 
languages and models, which aid in formally capturing 
the complex needs of emerging services.

4  Architecture, Design, and Implementation

The architecture of our system is presented in Fig-
ure 3. It consists of the PsEPR [6], on top of which three 



industry standard packages are running: OASIS Web 
Services Distributed Management (WSDM) defines 
management interfaces and schemas [17], DMTF Com-
mon Information Model (CIM) describes how informa-
tion and state is modeled [19], and Business Process 
Execution Language (BPEL) supports the workflow for 
services [20]. On top of these components, the deploy-
ment service is running as an implementation of the 
GGF Configuration Description, Deployment, and Life-
cycle Management (CDDLM) standard [21]. On top of 
the stack is the automation engine that automates 
deployment and management of the whole stack. As an 
example of a managed application we are using Planet-
Lab Data Base (PLDB). In the rest of the section we 
describe in more detail the PsEPR, deployment, and 
automation layers. 

4.1  PsEPR/PLDB
To build loosely-coupled, distributed applications, 

we created an event-based communication system 
named Planetary Scale Event Propagation and Router
(PsEPR). For communication of monitoring and control 
information, PsEPR creates an overlay network for the 
distribution of XML messages from a source to one or 
more receivers (See Figure 4).

Our experience with building and managing a large, 
disturbed service [2] lead us to conclude that loose cou-
pling among components (within or between distributed 
services) is necessary for robust distribution. Specifi-
cally, communication between virtual endpoints, where 
those endpoints can move (or be transparently redi-
rected) as necessary because of the ever changing char-
acteristics of communication bandwidth and 
availability. Our definition of “loose-coupling” 
includes:

• location independence of senders and receivers—
'location' both in network address space and in physi-
cal space;

• service independence—neither the provider nor the 
user of a service needs to know of the existence of the 
other;

• state independence—reliability or delivery guarantees 
are not required;

• connection flexibility—one-to-many and many-to-
many communication is easy.

Thus, PsEPR creates an overlay network on the 
existing Internet that efficiently moves event messages 
from clients sending the events to clients who have 
asked to receive the messages.

The PsEPR communication model sends XML for-
matted messages over named “channels”. Channels are 
hierarchically named with channels having sub-chan-
nels, etc. A client authenticates itself to PsEPR and 
sends event messages to any channel. To receive events, 
a client requests a “lease” on a particular channel -- a 
request to receive messages of a particular type from a 
channel and its sub channels.

Figure 4.  PsEPR Infrastructure and PLDB
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This is similar to a publish/subscribe system where 
event senders create the messages and receivers 'sub-
scribe' to the messages they wish to hear. For instance, a 
client on host named “x.example.com” could send
heartbeat messages on a channel:

con = new PsEPRConnection(credentials);
con.send(heartbeatEvent, 
"/example.com/heartbeat/x.example.com/");

One or more receivers could be listening to all 
heartbeat messages for this class of clients:

c = new PsEPRConnection(credentials);
les = c.getLease("/example.com/heartbeat/", 120, typeHeartbeatEvent);
event = les.receiveEvent();

In this simple example, the receiver has asked for 
all heartbeat events on the “/example.com/heartbeat/” 
channel and all of it's sub-channels for the next 120 sec-
onds. Since the sender is sending events addressed to a 
sub channel of that lease, the receiver will see it along 
with events sent on channels of other hosts. If the 
receiver only wanted events from the one host, it could
subscribe to that particular sub-channel.

Internally, PsEPR is made up of Routers which 
accept events from Clients, route the events among the 
Routers and deliver the events to other Clients based on 
routing tables. These routing tables are built by a Regis-
try service which runs parallel with each Router. The 
Registry service processes the 'lease' requests and thus 
knows who is listening for events on channels.

The Registries communicate among themselves to 
pass information on where leases are originating. In this 
way, the Routers implement an ever changing tree from 
senders and receivers. The current implementation uses 



a simple forwarding table, but we shall enhance infra-
structure with optimizing route calculations.

Measurements of PsEPR show that, while PsEPR is 
less efficient at point-to-point communication and high 
volume transfers, its flexibility makes adaptation of 
changing service configuration simple. Loose-coupling 
of service components, in the ways that PeEPR makes 
available, creates more reliable and scalable services 
and systems.

One service that has been implemented on top of 
PsEPR is PlanetLab Database (“PLDB”). Since PsEPR 
events are transient (they are lost if not received), PLDB 
is a service that recalls past events that appeared on cer-
tain channels.

Clients have been put on all PlanetLab nodes that 
output onto PsEPR channels information about the state 
of the node. Any program wishing to know the current 
state of a node could listen to that node's channel. But, 
these clients only put out a tuple of information when 
the value of that tuple changes. This necessitates some 
way of finding the last event sent out. Rather than creat-
ing a query-like communication to a tuple sender (it's 
not the sender's problem that the receiver hasn't been lis-
tening forever), requests for events from the past was 
generalized into a service (“PLDB”) which listens to 
channels and remembers the last values for tuples.

PLDB is made up of multiple Supervisors who each 
manage a collection of Monitors. Each individual Moni-
tor listens to one channel and collects and stores tuples 
that are seen on that channel. The Monitor can also gen-
erate tuples based on requests it sees on the channel -- 
some Client wishing to see a past tuple value sends a 
request event and the Monitor replays a version of the 
tuples with time information.

Figure 5. Deployment Components
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Each Supervisor who is managing a group of Moni-
tors also listens to the traffic on a set of channels and 
independently evaluates the number of Monitors that are 
operating on a channel. If there are too few monitors 
running, it creates a Monitor for that channel. If there 
are too many Monitors on a channel, the Supervisor can 
terminate one of it's Monitors. Heuristics around the 

number of Monitors on the channel, the timing of cre-
ation and destruction and geographical load balancing 
creates an ecosystem of Monitors listening to a set of 
channels.

4.2  Deployment 

We have built a system for deploying large scale 
decentralized services within wide area infrastructures. 
The functional requirements for this deployment system 
are to perform the installation, configuration, activation, 
and re-configuration of services. It addresses the chal-
lenges of scalable performance, high reliability, and fast 
recovery time in response to dynamic faults and work-
load variations. The design of our deployment system 
builds on the lessons and experiences gained from the 
SmartFrog Project at HP [33] and the CDDLM working 
group at GGF [21].

Figure 5 shows the conceptual view of the deploy-
ment system components. The key aspects are: decen-
tralized management components which describe the 
deployment actions of a service, a deployment configu-
ration schema that describes the configuration informa-
tion needed during deployment, deployment workflows
that compose the management components, and a 
decoupled communication mechanism based on SOAP-
PsEPR. The deployment system components are con-
ceptually distributed among a deployment server and a 
deployment target machines.

Application providers or writers typically specify 
the deployment details of the application service, e.g. 
steps needed to install the software, the list of dependent 
packages and services, in README files and manuals. 
Given the scale and complexity of the systems, there is a 
need to express the deployment information in a more 
structured and machine-readable manner, so as to be 
able to automate the complete deployment process in a 
repeatable way. Given an application service, an admin-
istrator using our proposed approach describes the logic 
for installation, configuration, and activation of the ser-
vice as Java methods of a management component. The 
management components extend well-defined deploy-
ment interfaces. The code snippet below shows an 
example management component. These management 
components are then distributed to all of the deployment 
targets.

public class GenericRPMInstaller {
  public boolean install(String parameters) {
     ....
// download the packages
     RsyncDownloader downloader = new 
     RsyncDownloader(downloadFromDir,downloadToLocation, 
       new Integer(downloadBlockSize).intValue());



     downloader.download();

// install the package 
    String installCmd = rpmCmd+downloadToLocation+"/"+rpm;
    File file = new File(downloadToLocation); 
    .....
p = Runtime.getRuntime ().exec (installCmd,null,file);
    .....
  }
}

At the time of deployment, the deployment admin-
istrator expresses the configuration information needed 
during the deployment process in a well-defined deploy-
ment configuration schema.

The administrator also describes the various depen-
dencies that the service has with other distributed ser-
vices and applications as a BPEL workflow. In this 
workflow, the deployer maps the dependency require-
ments that the application service provider has specified 
to the actual instances of the packages and services 
within the system. For example, an application writer 
specifies that this application needs an Oracle DB. The 
deployer maps this requirement to an actual Oracle DB 
available somewhere and specifies that in the BPEL 
workflow. The BPEL workflow appears as a composi-
tion of the management components.

<sequence name="main">
  <receive name="receiveInput" partnerLink="client" portType="tns:
   PLDBInstallation-Sequence" operation="process" variable="input" 
   createInstance="yes"/>
      .....
   <invoke name="invoke-1" partnerLink="deploymentengine-node-24"
    operation="invokeEngine" portType="nsx24:DeploymentEngine" 
    inputVariable="net-xmpp_input"/>
      .....
   <invoke name="invoke-2" partnerLink="deploymentengine-node-15"
    portType="nsx15:DeploymentEngine" operation="invokeEngine"     
    inputVariable="net-psepr_input"/>
......
</sequence>

The BPEL workflow is provided to a BPEL process 
manager responsible for orchestrating the deployment 
actions in accordance with the specified workflow. The 
BPEL process manager communicates with a deploy-
ment engine that exists on all of the deployment targets. 
The deployment engine on a deployment target node is 
responsible for receiving and processing all of the 
deployment requests given to that deployment target 
node. It parses the requests sent through a BPEL engine, 
locates the appropriate management component respon-
sible for a request, and then invokes the appropriate 
methods on that component. That method is responsible 
for executing the deployment actions for the service.

A workflow for a typical complex service would 
involve multiple management components, some of 

which are invoked and executed in parallel and others in 
sequence. 

We are implementing our deployment service on 
the basis of the design presented above. Our initial use 
case scenario is the deployment of PLDB. The software 
package for PLDB consists of a tar file for the core soft-
ware, and a set of dependent libraries that the software 
needs. The dependencies are expressed as BPEL work-
flows, and supplied to a ActiveBPEL workflow engine. 
We are creating a library of commonly used deployment 
components. For example, we have a RPMInstaller 
component, a RSyncDownloader component, a Notifier 
component among others. These components are being 
written in Java.

These generic components are then reused for the 
design of the deployment components written for PLDB 
application. An early version of the deployment engine 
has been developed in Java and hosted as a web service 
within a Tomcat-Axis container on every deployment 
target (managed client). 

A new transport mechanism has been integrated in 
the Axis stack to enable handling SOAP calls over 
PsEPR. Extending the Axis stack is just a matter of 
extending the BasicHandler class. We have called our 
PsEPR handler PsEPRSender: 

public void invoke(MessageContext msgContext) throws AxisFault {
SoapPayload myPA = new SoapPayload(

msgContext.getRequestMessage().getSOAPPartAsString() );
PsEPREvent myEV = new PsEPREvent();
myEV.setPayload(myPA);
PsEPRConnection  myConn = new PsEPRConnection(credentials);
myConn.sendEvent(myEV);

}

The PsEPR enabled client is required to set the new 
transport to the Call object. The Axis engine finds the 
link between PsEPRTransport and PsEPRSender in the 
client-config.wsdd created from the XML file below:

<deployment name="pepr" xmlns="http://xml.apache.org/axis/wsdd/"
            xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
   <handler name="PsEPRSender" 

type="java:soap.pepr.PsEPRSender" />
   <transport name="PsEPRTransport" pivot="PsEPRSender" />
</deployment>

The key benefits of our proposed design are (i) 
decentralized deployment process through management 
components and BPEL dependency specification for 
scalable and reliable deployment, (ii) standards based, 
high-level interaction (SOAP, WSDL and BPEL) for 
increased inter operability and decreased recovery time, 
(iii) workflow description expressiveness through BPEL 
language. Overall, we provide automation and lowered 
management costs through our system.



4.3  Model-based Automation

Large scale application services and systems pro-
vide challenges towards the design of automated man-
agement systems. For example, a management service 
responsible for self-adaptation to dynamic changes is 
required to deal with information and processes that are 
heterogeneous, of large size, and dynamic. The problem 
gets compounded further as complexity of the system 
increases, mandating a knowledge of intricate adminis-
trator learnings during key management decisions.

We propose a model-based design of automated 
management services to deal with the challenges men-
tioned above. Figure 6 

Figure 6. Conceptual partial view of the PLDB and the under-
lying infrastructure model.
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shows the conceptual view of the 
components of our design. In such a design, information 
models present a structured, formal representation of the 
information about the IT system and services. The infor-
mation model provides a set of well defined modeling 
classes and schemas to represent information about 
hardware elements, software services, their relationships 
and associated constraints. An example of such schemas 
and specifications are those defined by CIM. We build 
upon the CIM schemas within our prototype implemen-
tation.

The models are stored in model repositories. For 
scalable management, our design proposes a federation 
of distributed model repositories, each individual repos-
itory captures the local system information. A well 
defined model object manager and interfaces exist to 
access the information contained in the repositories. 

Distributed model repositories present several chal-
lenges. First, an appropriate partitioning of the system 
information is needed which accounts for locality of ref-

erence, and semantics of the stored information. Second, 
models need to be kept consistent across the system as a 
whole and have to deal with partial updates. 

Thirdly, the model object managers must support a 
scalable distributed query mechanism. Further, the 
model repositories themselves need to be self-adapting 
to changes, e.g. faults, occurring in the system. As an 
ongoing effort, we are designing solutions addressing 
these challenges. We are also extending the model man-
agement subsystem to provide support for histories, 
transactions, and multiple consistency levels.

In a typical usage of models, schemas for the sys-
tem under consideration are designed. The designed 
schemas support multiple levels of abstraction of system 
information. Instances of the designed model are subse-
quently created and stored in the distributed model 
repositories. They are initialized with information on 
current state of the local system for which they are 
responsible. Thereafter, the instance models are continu-
ously updated to reflect new states of the system. 

The model repositories thus capture the complex 
system information in a structured and distributed man-
ner, and they together provide a near-real time view of 
the entire system (see Figure 7)

Figure 7. Model Based Automation Component
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. Our model-based 
decentralized management services rely on the informa-
tion captured by models during their decision making 
processes. At any given time, a particular component of 
the decentralized management service selects a subset 
of model repositories to obtain current system informa-
tion. The choice of this subset is statistical and depends 
on various performance and locality properties. 

Once the subset of model repositories is selected, 
the management service chooses the level of abstraction 
within the model that is most appropriate to its needs. 
The decision making is then done using the incomplete 
system knowledge.

We present two examples of automated manage-
ment services to illustrate the design. First, consider an 



adaptation service, that determines the set of adaptation 
actions to be taken in response to dynamic events. 
Whenever an event occurs in the system, it is propa-
gated to the model repositories, and the model instances 
are updated to reflect the event. The models at this point 
have captured the complex current state of the system in 
a structured meaningful manner. The adaptation service 
applies reasoning on this structured information, and 
determines the set of low level system wide changes e.g.
the set of redeployment actions, that need to be imple-
mented in the system.

Next, consider a resource allocation management 
service that processes monitoring data collected in a dis-
tributed system. The service needs to know information 
about the monitoring collectors/reporters etc. This is a 
challenge in a complex, dynamic, and heterogeneous 
system consisting of several hundreds of computing ele-
ments, each with their own collecting and reporting 
infrastructure. With our approach, this complex infor-
mation is captured in models. The management service 
is designed to only refer to the models to obtain the 
information. The model is continuously updated to 
reflect the new system state even in the presence of 
dynamic system changes.

We are using OpenPegasus software as the basic 
infrastructure for storing and retrieving CIM-based 
models. The implementation of distributed model repos-
itories is currently a work in progress. Our future and 
ongoing effort also includes prototyping an adaptation 
service based on our model-based approach within Plan-
etlab environment.

5  Performance Evaluation

We have performed a few experiments in order to 
verify the scalability of our management system. We 
have performed measurements for PsEPR, WS-based 
deployment, models, and the PlanetLab Data Base 
(PLDB).

We were interested in comparing the performance 
of two types of Web service communication: the syn-
chronous SOAP over HTTP with the asynchronous 
SOAP over PsEPR. The Web service used in these 
experiments is a dummy service, which simulates the 
execution of a deployment operation. We have used 
Axis as the Web service container for both HTTP and 
PsEPR scenarios. Axis is easily integrated into Tomcat 
and it also allows the transport layer to be changed. The 
HTTP Web service was made available through Tomcat 
and we have written a PsEPR server to substitute Tom-
cat for handling PsEPR-SOAP requests. 

The PsEPR server gets a lease on a channel and 
retrieves the SOAP payload received in PsEPR events. 
The SOAP payload is handed to an Axis engine.The 
Web service response is returned by the Axis engine to 
the PsEPR server and then it is sent back to the origina-
tor of the call. 

We have two clients for originating requests, one 
executes synchronous communication (HTTP), which 
means the client sends the request and receives the 
response in the same thread, and the other executes 
asynchronous communication (PsEPR), which means 
the request is sent in a thread and the response is 
received in an independent thread. 

Our network of Web services runs on over fifty 
nodes of Planet Lab, each one running a few instance of 
the Tomcat and the PsEPR server totaling around sixty-
five instances of each server. In each experiment (HTTP 
and PsEPR), we have measured the time taken to exe-
cute the calls to a set of Web services running on a num-
ber of nodes. A call consists of sending a request and 
waiting for a response either synchronously or asyn-
chronously. We run the same experiments increasing the 
size of the payloads. As described in Section 4.2, 
deployment configuration schemas are distributed to 
deployment targets. We wanted to verify what is the 
impact of using larger SOAP envelopes (simulating 
more complex schemas) on the performance of Web ser-
vice calls. Figure 8

Figure 8. SOAP over HTTP vs. SOAP over PsEPR.
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 demonstrates the increase on the 
time span of a deployment operation when the number 
of nodes involved in the operation increases and also the 
size of the payload is increased. 

We conducted a few experiments to find out the 
feasibility of using WSDM MUWS for our scalable 
management solution. We compared Web Services 



using Axis as the Service Container against MUWS. 
Our experiment mainly focused on finding out how 
much overhead both systems incurred when the scale 
increased. We ran experiments comprising of 2 to 87 
nodes on PlanetLab. Figure 9 

Figure 9. Scaling management using WSDM.

shows how the two solu-
tions compared among each other with increasing scale. 
The experiment consisted of making a synchronous call 
to a Web Service running using WSDL and another one 
running using MUWS and waiting for a response. As 
you can see from the figure, WSDM has more overhead 
than the WSDL based approach, but the overhead is not 
significant. So, we believe that the advantage of using 
WSDM MUWS outweighs the disadvantage of the 
overhead.

Figure 10. SmartFrog vs Web Services based deployment 
compared on increasing number of targets.

We conducted several experiments that compare 
SmartFrog based deployment against our Web Services 
based deployment solution. The experiments consisted 
of deploying PLDB in a series of PlanetLab nodes. The 
nodes were chosen from a geographically dispersed set 
of locations around the world. We varied the number of 
deployment nodes from 1 to 105 and found that the Web 
Services based light weight solution consistently outper-

formed the SmartFrog based deployment solution in 
terms of deployment time when the scale increased. The 
results of this test are shown in Figure 10. The experi-
ments cemented our belief that, although Web Service 
solution is perceived to perform slower and consume 
more memory and CPU, the differences are less marked 
in realistic applications [34]. Moreover, we believe that 
some of the known advantages of the Web Services 
based solution such as inter operability and extendabil-
ity simply outweigh the drawbacks. The purpose of the 
experiments was not to prove that the Web Services 
based solution is better than the SmartFrog based solu-
tion, but rather how Web Services based deployment is a 
viable solution for large scale deployment. It doesn't 
seem fair to compare SmartFrog which is feature rich 
against our light weight Web Services based solution. 
Nonetheless, the results are encouraging and show a pat-
tern that we expect to see in terms of scalability and 
extensibility. In the future, we plan to improve our solu-
tion to have a richer functionality. We also plan to 
replace the underlying communications stack from 
HTTP to PsEPr. We believe that using PsEPR for 
deployment will improve scalability and reliability 
while the use of Web Services will improve interopera-
bility.

One of the services we have constructed based on 
our eventing, deployment, and management principles 
is the PlanetLab database service, a tuple-store service 
providing management information for PlanetLab. 
Numerous PLDB monitors running on PlanetLab 
observe properties like load average, currently installed 
packages, and kernel checksums which are transmitted 
via PsEPR to any listening services. PLDB achieves 
robustness, reliability, and high availability through ser-
vice replication. A management supervisor monitors 
health of the tuple-store service and dynamically starts 
and stops local monitors on a per channel basis in order 
to maintain robustness, reliability and availability goals.
Figure 11 shows a set of PLDB monitors running on a 
group of channels. When all the monitors on a single 
node are killed, other node supervisors detect the reduc-
tion in redundancy on a per channel basis, and automati-
cally create new channel monitors to restore the service 
to it's design parameters.

6  Lessons Learned

In this section we summarize some lessons learned 
while exploring scalable management of global ser-
vices.

• There are trade-offs between performance and reliabil-
ity for traditional point to point communication v. 



Figure 11. Flexing PLDBs
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loosely-coupled publish-subscribe. Our preliminary 
simulation as well as real system performance mea-
surement indicated the scalability benefits of the latter. 
PsEPR enables decoupling at the lowest layer. PLDB's 
ability to use multiple channel monitors showed that 
loose-coupling (client's finding each other in PsEPR 
channels) creates easy and transparent reliability from 
the client perspective.

• Decoupling at the communication layer is not enough. 
We also need decoupling higher in the stack. This 
requires an event-driven programming model in the 
design of management services. While a fully decen-
tralized and decoupled service is ideal to handle scale, 
it opens a problem in managing it. We thus end up 
with building a decentralized management solution to 
manage a decentralized application service, and then 
we need another decentralized management solution 
to manage decentralized management service, and so 
on. There is still an open question in how to fine tune 
the balance between decentralization and ease of man-
agement

• We decoupled the expression of dependencies from 
the component model, such as in SmartFrog. This 
enabled us to reason and manage the dependencies 
through workflows. However, this introduced the need 
to manage the expressed dependencies (install, update 
as they change, etc.). There exists trade-off between 
improved expressiveness and development time (e.g. 
of workflows, language). As we develop higher level 
of abstractions, such as expressing dependencies for 
deployment, it enables more degrees of run-time 
design changes.

• The proposed solution to address the complexity prob-
lem is to build solutions that capture complexity in a 
structured manner, based on models. This way the 
“effort” needed in dealing with complexity is being 

shifted from “runtime” to “development time”. How-
ever, there is a trade-off that exists in this shift in terms 
of maintenance cost, software development effort, and 
disruption to existing systems design.

• There is a need to architect for global services. Ser-
vices for reliable global operation are different from 
applications built for the machine room. Their require-
ments are different and rely primarily on scalability, 
complexity, dealing with incomplete knowledge.

7  Summary and Future Work

We have presented a new approach for scalable 
management, based on decoupling, decentralization, 
and dealing with incomplete knowledge. We demon-
strated design and implementation of three system com-
ponents that contribute to the architecture of scalable 
management: a scalable publish-subscribe evening, WS-
based deployment, and a model-based management. We 
have evaluated performance of these components in 
terms of scalability. All these features are critical for 
autonomous systems of future. 

In the future, we are going to explore extensions to 
the WSDM interface for scalable management (multi-
cast management channels) and workflows for manag-
ing multiple interdependent components. We are also 
going to add more features to our management compo-
nents and make it available as a toolkit to PlanetLab 
community. We plan to capture their experience of 
researchers in the form of best practices for scalable 
management. One area that we specifically want to 
focus on is policies and best practices for management 
of large scale globally distributed services. Once we 
have the basic scalable management infrastructure in 
place and it is used by the PlanetLab users, we shall be 
able to experiment with different policies and capture 
and derive the best practices.
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