
Scalable Management
Technologies for Management of Large-Scale, Distributed Systems

Robert Adams†, Paul Brett†, Subu Iyer, Dejan Milojicic, Sandro Rafaeli, Vanish Talwar
HP Labs, Intel†

[firstname.lastname]@[hp, intel].com
Abstract
Modern computing environments, such as enterprise data

centers, Grids, and PlanetLab, introduce distributed services
to address scalability, locality, and reliability. Web Services
(WS), in particular, improve decoupling, decentralization, and
autonomicity within distributed systems. Unfortunately, scale
and decentralization introduce additional problems in distrib-
uted services management, such as deployment, monitoring,
and lifecycle maintenance.

In this paper, we propose a new approach to management
of large scale distributed services, based on three artifacts:
scalable publish-subscribe eventing, scalable WS-based
deployment, and model-based management. We demonstrate
that these techniques improve the manageability of services. In
this way we enable service developers to focus on the develop-
ment of service functionality rather than on management fea-
tures.

1 Introduction

Contemporary computing systems are increasing in
scale and broad deployment across the globe. This is
true for enterprise, scientific systems, as well as con-
sumer space. Traditional centralized enterprise data cen-
ters are expanding into dozens of geographically
dispersed data centers. Remote operations are contend-
ing with even more management complexity while also
dealing with the emergence of hundreds of so called
closet computers in small branch offices and home
offices. Leveraging computation or data assets in Grid
[1]or PlanetLab [2] environments pose similar require-
ments. As applications and services move out of the
datacenter and into distributed installations, a new class
of applications and services are coming about which are
large-scale, geographically distributed, shared, and het-
erogeneous.

This has dramatically changed the design assump-
tions for such systems and applications. Scalability is
not limited any more by physical or administrative
boundaries—systems span the globe and cross organiza-

tions. Availability is not driven only by private networks
and corporate policies—many systems are connected
over wide area network and outside of a given adminis-
trative domain. This results in a significant dynamism in
terms of unexpected loads, rebooting and upgrading
machines and services.

We claim that as systems continue to grow in size
and wide-area deployment, traditional management
approaches, such as those currently used by OpenView
[3], Tivoli® [4], and Unicenter® [5], will become less
effective. The management systems are moving towards
service oriented architectures [16] as demonstrated by
the recent standards, such as WSDM [17] and WS-Man-
agement [18]. But, scalability, availability and dyna-
mism create additional requirements.

The features we consider essential are loose cou-
pling of the management stack (communication, deploy-
ment services, and model-based automation),
decentralization (distribution, no central point of man-
agement), and as a result of previous two, dealing with
incomplete knowledge.

To demonstrate the utility of these features to scaled
management, we created a scalable, decentralized, dis-
tributed service provisioning and management system
which includes three significant artifacts: Planetary
Scale Event Propagation and Router (PsEPR, pro-
nounced “pepper”) [6], an infrastructure for scalable,
publish-subscribe eventing which scales significantly
better than point-to-point or hierarchical topologies;
WS-based service deployment tool [7] which decouples
deployment specification from the dependencies and
component models; and finally model-based automation
which enables changes to the design of the system at run
time, enabling a higher degree of automation.

These three artifacts enable future application
developers to more easily to design, develop, and man-
age a distributed applications that have no deployment
or management center (decentralized), that are geo-

graphically disperse and that adapt to changing resource
availability and workload. We have built these three
artifacts on the PlanetLab test bed [2], which has been
used for the last several years for deployment and test-
ing of this class of applications. Some key learnings
from running very large scale applications and services
on PlanetLab align very well with our goals of decou-
pling, decentralization, and dynamism.

Even though we do not explicitly address self-*
characteristics in this paper, scalable management is
closely related to much of the work in autonomic com-
puting. The two areas share a number of required and
recommended behaviors for autonomic computing [8].
For example, in order to accommodate scale, manage-
ment must be fully automated, i.e. self-managed; it must
handle problems locally whenever possible (i.e. the
impact of a change in an area should not impact other
services at the global scale); and scalable services’
behaviors and relationships must be managed so that
they meet service level agreements. Furthermore in
order to accomplish scalable management, underlying
systems must implement these design patterns such as
self-configuration, self-healing, and self-optimization.
While in this paper we do not explicitly address these
patterns, the topics of manageability automation, adap-
tation, performance, and dependencies are critical for
large scale autonomic systems. In addition, scalable
management requirements such as decoupling, decen-
tralization, and dealing with incomplete knowledge, are
also features of autonomic systems.

1.1 Motivating Scenarios
To illuminate the required features of scalable man-

agement, we present three motivating scenarios: global
service health, inventory; and plug-in.

Global Service Health. Consider a service that
provides some functionality to people or computers all
over the world, runs 24/7, is hosted at hundreds of loca-
tions that are geographically separated and which is
made up of many interacting components. Somehow,
the service must decide which hosts to run on, allocate
the resources for on those hosts and then install and con-
figure itself on those hosts. The set of hosts will be con-
stantly changing because of hardware failures, network
failures, purposeful reconfiguration of the hardware or
network and because of malicious activity. Additionally,
the number of hosts required by the service can change
because of work load or new business requirements.
Also, the number of separate components of the applica-
tion can be constantly changing and thus the installation
and reconfiguration process is continuous.

Running on multiple, geographically disperse loca-
tions has the advantage that the service has increased
immunity to failure and attack. But, from a management
point of view, it is hard to know if the service is running
correctly. This service demonstrates the extremes of
decentralization and decoupling. So, besides the prob-
lems of deploying and configuring a decentralized
application, there are problems of management and con-
trol.

Global Service Inventory. Consider an installation
of computers that spans the globe. This could be all the
desktop computers in a multi-national corporation or all
of the blades in a collection of data centers that have
been geographically located around the world. Monitor-
ing and controlling all of these computers becomes diffi-
cult at some scale. Manual and semi-automatic
management of the systems will seek solutions like run-
ning similar applications on all of the computers and
limiting the variations in hardware configurations. How-
ever, data centers will only grow and the number of cli-
ent computers will only increase. This growth will
require automated management and control. Because of
unreliable monitoring systems and the network, the
management and control feature will need to run in mul-
tiple locations.

Usual solutions are to centralize management and
to build hierarchies of managers—clients are managed
by low level management systems and these low-level
managers are managed by other managers and these
managers are controlled by a central manager. It is easy
to see that these layers create more complexity and more
things to manage. Additionally, managing the managers
has the same problems as managing the low level com-
puters. In a summary, this scenario requires scalable
communication that connects managers and other scal-
able components and automated management/control
interface.

Global Service Plug-in. Consider a service that
uses several services to perform its function. If there is a
need to install this service in a new environment, a num-
ber of services that this service depends on may already
be running, but some may not. Of the already running
services, some of them may be the right version, but the
others may be obsolete and a new version needs to be
installed.

Furthermore, the running services, with the right
version, need to be verified for correctness of operation
prior to installing a new service. Correctness also
includes the service level agreements that need to be
guaranteed for the composite service. Once everything

is verified and all dependencies have been resolved, the
new service needs to be “plugged-in” into existing ser-
vices, by dynamically connecting new service with
existing services. In a summary, this scenario requires
service discovery or the updated model of the system,
service health monitoring, and loose and recoverable
connection between services

The remainder of the paper is organized in the fol-
lowing manner: Section 2 motivates the paper with an
analysis of scalability and complexity. In Section 3 we
present related work in the area. Section 4 describes
architecture, design, and implementation of the three
artifacts. In Section 5 we evaluate performance of our
solutions, followed by lessons learned in Section 6.
Summary and future work are presented in Section 7.

2 .Dealing with Scale and Complexity

To further motivate the need to deal with scalability
and complexity, we have performed two experiments.

Discreet event simulations of centralized, hierarchi-
cal and decentralized control structures were con-
structed in order to predict the behavior at large scale of
these control structures. These simulations, based on
published measurements of the global Internet for
response times [9] and packet loss [10], simulate the
effects of TCP delays and losses on the planetary scale
command and control structure implemented on top of
TCP. Figure 1 shows the results obtained for a resource
constraint of 100 simultaneous connections at each
node, with a 3.5% probability of packet loss and with
the TCP recovery strategy [11]. Additionally, these sim-
ulations included introducing delays due to resource
constraints at each node and connection failures

Centralized management and control of applica-
tions were seen to suffer from significant performance
degradation at scale, due to resource constraints and
error rates on globally distributed networks.

Hierarchical topologies improve the control and
management scalability significantly, but reach limits on
very large networks due to the cumulative effect of net-
work failure as the tree depth increases.

Shared routing overlay networks such as PsEPR
provide better performance on globally distributed net-
works by amortizing the overhead of maintaining opti-
mum routing architectures over many applications.
Additionally, the use of a common command and con-
trol structure provides improved resiliency to real-world
latencies and error rates.

Relatively speaking, improvements in latency sig-
nificantly lag improvements in bandwidth

Figure 1. Comparison of managing approaches: centralized,
hierarchical (spanning tree) and publish-subscribe (simulated).

[12]. The
impact of this is the decreasing efficiency of static,
hiearchical communication structures and the increasing
performance of decentralized, dynamic structures.

In the second experiment, we have compared the
number of required changes as a result of a reconfigura-
tion or failure. We have evaluated the number of
changes as a function of service complexity and scale.
We looked at system changes in response to dynamic
events for a simple application - a JPetStore application,
a medium complex application - a local content pro-
vider and a complex application - an airline reservation
system running in multiple countries in different lan-
guages. Our analysis of system changes in response to
dynamic events exhibits the challenges faced in design-
ing automated management services with an ever
increasing complexity of systems.

The dynamic events introduced are those of appli-
cation server failures, and addition of new application
servers. The higher level dynamic events result in sev-
eral subsequent changes within the system. This is
attributed to the complex interdependencies that exists
among the system components. As can be seen from the
graph presented in Figure 2, the number of needed sys-
tem changes grow exponentially with an increase in
complexity. The problem becomes even more challeng-
ing in very large scale systems wherein management
services are decentralized and have to make decisions
based on incomplete knowledge. The graphs illustrate a
very critical problem, that of designing automated man-
agement services that can deal with an ever increasing
complexity of the system.

Figure 2. A Number of Complex Service Changes as a function
of scale & Complexity. The scale is shown with respect to num-
ber of app servers which are affected by the dynamic event.

Our approach to handling this complexity is to
model applications and services and multiple loosely
connected components. The information model infra-
structure captures the current state of the system. When-
ever dynamic events occur, they are propagated to the
information models. The information models are then
reasoned upon by adaptation management services to
determine the low level system changes that needs to be
implemented in the system. These changes are then exe-
cuted within the system. Other management services
that rely on system knowledge, for example, monitoring
services, only need to refer to the updated information
model to obtain updated current system state.

3 Related Work

Our work on scalable management draws a lot of
similarities with work in many areas. While we leverage
the existing experience, we are different in that our pri-
mary focus is on the very large scale, global services. In
particular, we base our work on service oriented archi-
tectures, but in order to accomplish the scale, we are
required to adopt autonomic techniques.

PsEPR is similar in concept to publish/subscribe
systems. These range from Java Message Service [22] to
TIBCO Corporation’s Rendezvous [23]. PsEPR differs
from these by dynamically creating communication
points dynamically so event senders and receivers have
minimal dependencies. PsEPR’s overlay routing is also
opaque thus allowing services to adapt to it’s structure --
for instance, moving computation “close” to data
sources. This sort of messaging structure is also being
explored in Astrolabe[24]. There are also many other
examples of publish subscribe co-ordination and com-
munication efforts [25, 26, 27, 28].

Figure 3. High Level Architecture

PsEPR

WSDM CIM BPEL

CDDLM

Model-Based Management

PLDB other
services

other
services

In terms of related work in the area of application
management systems, several deployment tools exist.
Deployme system for package management and deploy-
ment supports creation of the package, distribution,
installation, and deleting old unused packages from
remote hosts [30]. Kramer et al. describe CONIC, a lan-
guage specifically designed for system description, con-
struction, and evolution [31]. Cfengine provides an
autonomous agent and a middle to high level policy lan-
guage for building expert systems which administrate
and configure large computer systems[32].

Existing management solutions similarly address
functionalities in other areas of our interest, e.g., adapta-
tion to failures and to performance violations ([3], [4],
[5]). The effectiveness of these traditional solutions in
large distributed systems is significantly reduced by a
number of properties of these solutions. These are cen-
tralized control, tight coupling, non-adaptivity, semi-
automation. Furthermore, these solutions do not ade-
quately address the needs and characteristics of large-
scale distributed services. Most of the tools do not by
themselves provide complete lifecycle management
capability necessary in large dynamic systems such as
Planetlab.

In contrast, we are designing our management sys-
tem by leveraging scalable technologies, some of which
are mentioned in this section, e.g., publish-subscribe,
decentralized agents and control, decentralized decision
making, and extending them further to the next level of
very large scale global services. We provide solutions
for deployment, eventing, and adaptation for services
lifecycle management. We also propose higher level
abstractions for service and system descriptions through
languages and models, which aid in formally capturing
the complex needs of emerging services.

4 Architecture, Design, and Implementation

The architecture of our system is presented in Fig-
ure 3. It consists of the PsEPR [6], on top of which three

industry standard packages are running: OASIS Web
Services Distributed Management (WSDM) defines
management interfaces and schemas [17], DMTF Com-
mon Information Model (CIM) describes how informa-
tion and state is modeled [19], and Business Process
Execution Language (BPEL) supports the workflow for
services [20]. On top of these components, the deploy-
ment service is running as an implementation of the
GGF Configuration Description, Deployment, and Life-
cycle Management (CDDLM) standard [21]. On top of
the stack is the automation engine that automates
deployment and management of the whole stack. As an
example of a managed application we are using Planet-
Lab Data Base (PLDB). In the rest of the section we
describe in more detail the PsEPR, deployment, and
automation layers.

4.1 PsEPR/PLDB
To build loosely-coupled, distributed applications,

we created an event-based communication system
named Planetary Scale Event Propagation and Router
(PsEPR). For communication of monitoring and control
information, PsEPR creates an overlay network for the
distribution of XML messages from a source to one or
more receivers (See Figure 4).

Our experience with building and managing a large,
disturbed service [2] lead us to conclude that loose cou-
pling among components (within or between distributed
services) is necessary for robust distribution. Specifi-
cally, communication between virtual endpoints, where
those endpoints can move (or be transparently redi-
rected) as necessary because of the ever changing char-
acteristics of communication bandwidth and
availability. Our definition of “loose-coupling”
includes:

• location independence of senders and receivers—
'location' both in network address space and in physi-
cal space;

• service independence—neither the provider nor the
user of a service needs to know of the existence of the
other;

• state independence—reliability or delivery guarantees
are not required;

• connection flexibility—one-to-many and many-to-
many communication is easy.

Thus, PsEPR creates an overlay network on the
existing Internet that efficiently moves event messages
from clients sending the events to clients who have
asked to receive the messages.

The PsEPR communication model sends XML for-
matted messages over named “channels”. Channels are
hierarchically named with channels having sub-chan-
nels, etc. A client authenticates itself to PsEPR and
sends event messages to any channel. To receive events,
a client requests a “lease” on a particular channel -- a
request to receive messages of a particular type from a
channel and its sub channels.

Figure 4. PsEPR Infrastructure and PLDB

PLDB

PLDB

PLDB
monitoring
sensors

visualization
tool

listen to
channels

listen to
channels output to

channels
listen to
channels

monitored
data used by

management
services monitored

data used by

PsEPR

This is similar to a publish/subscribe system where
event senders create the messages and receivers 'sub-
scribe' to the messages they wish to hear. For instance, a
client on host named “x.example.com” could send
heartbeat messages on a channel:

con = new PsEPRConnection(credentials);
con.send(heartbeatEvent,
"/example.com/heartbeat/x.example.com/");

One or more receivers could be listening to all
heartbeat messages for this class of clients:

c = new PsEPRConnection(credentials);
les = c.getLease("/example.com/heartbeat/", 120, typeHeartbeatEvent);
event = les.receiveEvent();

In this simple example, the receiver has asked for
all heartbeat events on the “/example.com/heartbeat/”
channel and all of it's sub-channels for the next 120 sec-
onds. Since the sender is sending events addressed to a
sub channel of that lease, the receiver will see it along
with events sent on channels of other hosts. If the
receiver only wanted events from the one host, it could
subscribe to that particular sub-channel.

Internally, PsEPR is made up of Routers which
accept events from Clients, route the events among the
Routers and deliver the events to other Clients based on
routing tables. These routing tables are built by a Regis-
try service which runs parallel with each Router. The
Registry service processes the 'lease' requests and thus
knows who is listening for events on channels.

The Registries communicate among themselves to
pass information on where leases are originating. In this
way, the Routers implement an ever changing tree from
senders and receivers. The current implementation uses

a simple forwarding table, but we shall enhance infra-
structure with optimizing route calculations.

Measurements of PsEPR show that, while PsEPR is
less efficient at point-to-point communication and high
volume transfers, its flexibility makes adaptation of
changing service configuration simple. Loose-coupling
of service components, in the ways that PeEPR makes
available, creates more reliable and scalable services
and systems.

One service that has been implemented on top of
PsEPR is PlanetLab Database (“PLDB”). Since PsEPR
events are transient (they are lost if not received), PLDB
is a service that recalls past events that appeared on cer-
tain channels.

Clients have been put on all PlanetLab nodes that
output onto PsEPR channels information about the state
of the node. Any program wishing to know the current
state of a node could listen to that node's channel. But,
these clients only put out a tuple of information when
the value of that tuple changes. This necessitates some
way of finding the last event sent out. Rather than creat-
ing a query-like communication to a tuple sender (it's
not the sender's problem that the receiver hasn't been lis-
tening forever), requests for events from the past was
generalized into a service (“PLDB”) which listens to
channels and remembers the last values for tuples.

PLDB is made up of multiple Supervisors who each
manage a collection of Monitors. Each individual Moni-
tor listens to one channel and collects and stores tuples
that are seen on that channel. The Monitor can also gen-
erate tuples based on requests it sees on the channel --
some Client wishing to see a past tuple value sends a
request event and the Monitor replays a version of the
tuples with time information.

Figure 5. Deployment Components

deployment
configuration

schema

WorkFlows
deployment

deployment server deployment target
user writes

repository

service
packages

BPEL WF

PsEPR

manager

SOAP

deployment

PsEPR

engine

SOAP
deployment
Web service
Component

Each Supervisor who is managing a group of Moni-
tors also listens to the traffic on a set of channels and
independently evaluates the number of Monitors that are
operating on a channel. If there are too few monitors
running, it creates a Monitor for that channel. If there
are too many Monitors on a channel, the Supervisor can
terminate one of it's Monitors. Heuristics around the

number of Monitors on the channel, the timing of cre-
ation and destruction and geographical load balancing
creates an ecosystem of Monitors listening to a set of
channels.

4.2 Deployment

We have built a system for deploying large scale
decentralized services within wide area infrastructures.
The functional requirements for this deployment system
are to perform the installation, configuration, activation,
and re-configuration of services. It addresses the chal-
lenges of scalable performance, high reliability, and fast
recovery time in response to dynamic faults and work-
load variations. The design of our deployment system
builds on the lessons and experiences gained from the
SmartFrog Project at HP [33] and the CDDLM working
group at GGF [21].

Figure 5 shows the conceptual view of the deploy-
ment system components. The key aspects are: decen-
tralized management components which describe the
deployment actions of a service, a deployment configu-
ration schema that describes the configuration informa-
tion needed during deployment, deployment workflows
that compose the management components, and a
decoupled communication mechanism based on SOAP-
PsEPR. The deployment system components are con-
ceptually distributed among a deployment server and a
deployment target machines.

Application providers or writers typically specify
the deployment details of the application service, e.g.
steps needed to install the software, the list of dependent
packages and services, in README files and manuals.
Given the scale and complexity of the systems, there is a
need to express the deployment information in a more
structured and machine-readable manner, so as to be
able to automate the complete deployment process in a
repeatable way. Given an application service, an admin-
istrator using our proposed approach describes the logic
for installation, configuration, and activation of the ser-
vice as Java methods of a management component. The
management components extend well-defined deploy-
ment interfaces. The code snippet below shows an
example management component. These management
components are then distributed to all of the deployment
targets.

public class GenericRPMInstaller {
 public boolean install(String parameters) {

// download the packages
 RsyncDownloader downloader = new
 RsyncDownloader(downloadFromDir,downloadToLocation,
 new Integer(downloadBlockSize).intValue());

 downloader.download();

// install the package
 String installCmd = rpmCmd+downloadToLocation+"/"+rpm;
 File file = new File(downloadToLocation);

p = Runtime.getRuntime ().exec (installCmd,null,file);

 }
}

At the time of deployment, the deployment admin-
istrator expresses the configuration information needed
during the deployment process in a well-defined deploy-
ment configuration schema.

The administrator also describes the various depen-
dencies that the service has with other distributed ser-
vices and applications as a BPEL workflow. In this
workflow, the deployer maps the dependency require-
ments that the application service provider has specified
to the actual instances of the packages and services
within the system. For example, an application writer
specifies that this application needs an Oracle DB. The
deployer maps this requirement to an actual Oracle DB
available somewhere and specifies that in the BPEL
workflow. The BPEL workflow appears as a composi-
tion of the management components.

<sequence name="main">
 <receive name="receiveInput" partnerLink="client" portType="tns:
 PLDBInstallation-Sequence" operation="process" variable="input"
 createInstance="yes"/>

 <invoke name="invoke-1" partnerLink="deploymentengine-node-24"
 operation="invokeEngine" portType="nsx24:DeploymentEngine"
 inputVariable="net-xmpp_input"/>

 <invoke name="invoke-2" partnerLink="deploymentengine-node-15"
 portType="nsx15:DeploymentEngine" operation="invokeEngine"
 inputVariable="net-psepr_input"/>
......
</sequence>

The BPEL workflow is provided to a BPEL process
manager responsible for orchestrating the deployment
actions in accordance with the specified workflow. The
BPEL process manager communicates with a deploy-
ment engine that exists on all of the deployment targets.
The deployment engine on a deployment target node is
responsible for receiving and processing all of the
deployment requests given to that deployment target
node. It parses the requests sent through a BPEL engine,
locates the appropriate management component respon-
sible for a request, and then invokes the appropriate
methods on that component. That method is responsible
for executing the deployment actions for the service.

A workflow for a typical complex service would
involve multiple management components, some of

which are invoked and executed in parallel and others in
sequence.

We are implementing our deployment service on
the basis of the design presented above. Our initial use
case scenario is the deployment of PLDB. The software
package for PLDB consists of a tar file for the core soft-
ware, and a set of dependent libraries that the software
needs. The dependencies are expressed as BPEL work-
flows, and supplied to a ActiveBPEL workflow engine.
We are creating a library of commonly used deployment
components. For example, we have a RPMInstaller
component, a RSyncDownloader component, a Notifier
component among others. These components are being
written in Java.

These generic components are then reused for the
design of the deployment components written for PLDB
application. An early version of the deployment engine
has been developed in Java and hosted as a web service
within a Tomcat-Axis container on every deployment
target (managed client).

A new transport mechanism has been integrated in
the Axis stack to enable handling SOAP calls over
PsEPR. Extending the Axis stack is just a matter of
extending the BasicHandler class. We have called our
PsEPR handler PsEPRSender:

public void invoke(MessageContext msgContext) throws AxisFault {
SoapPayload myPA = new SoapPayload(

msgContext.getRequestMessage().getSOAPPartAsString());
PsEPREvent myEV = new PsEPREvent();
myEV.setPayload(myPA);
PsEPRConnection myConn = new PsEPRConnection(credentials);
myConn.sendEvent(myEV);

}

The PsEPR enabled client is required to set the new
transport to the Call object. The Axis engine finds the
link between PsEPRTransport and PsEPRSender in the
client-config.wsdd created from the XML file below:

<deployment name="pepr" xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <handler name="PsEPRSender"

type="java:soap.pepr.PsEPRSender" />
 <transport name="PsEPRTransport" pivot="PsEPRSender" />
</deployment>

The key benefits of our proposed design are (i)
decentralized deployment process through management
components and BPEL dependency specification for
scalable and reliable deployment, (ii) standards based,
high-level interaction (SOAP, WSDL and BPEL) for
increased inter operability and decreased recovery time,
(iii) workflow description expressiveness through BPEL
language. Overall, we provide automation and lowered
management costs through our system.

4.3 Model-based Automation

Large scale application services and systems pro-
vide challenges towards the design of automated man-
agement systems. For example, a management service
responsible for self-adaptation to dynamic changes is
required to deal with information and processes that are
heterogeneous, of large size, and dynamic. The problem
gets compounded further as complexity of the system
increases, mandating a knowledge of intricate adminis-
trator learnings during key management decisions.

We propose a model-based design of automated
management services to deal with the challenges men-
tioned above. Figure 6

Figure 6. Conceptual partial view of the PLDB and the under-
lying infrastructure model.

PL Compute Node

Properties:
Hostname=
machine1.hp.com

PL Compute Node

Properties:
Hostname=
machine1.intel.com

VServer

Properties:
Version ID= 3.0
OS Version=RH 9.0

VServer

Properties:
Version ID= 2.0
OS Version=RH 8.0

Application 1

.

.

.

Properties:

App Version=1.0

Application N

Properties:

App Version=2.0

PLDB Application

Properties:
Version = 2.0

PLDB Application

Properties:
Version = 3.0

shows the conceptual view of the
components of our design. In such a design, information
models present a structured, formal representation of the
information about the IT system and services. The infor-
mation model provides a set of well defined modeling
classes and schemas to represent information about
hardware elements, software services, their relationships
and associated constraints. An example of such schemas
and specifications are those defined by CIM. We build
upon the CIM schemas within our prototype implemen-
tation.

The models are stored in model repositories. For
scalable management, our design proposes a federation
of distributed model repositories, each individual repos-
itory captures the local system information. A well
defined model object manager and interfaces exist to
access the information contained in the repositories.

Distributed model repositories present several chal-
lenges. First, an appropriate partitioning of the system
information is needed which accounts for locality of ref-

erence, and semantics of the stored information. Second,
models need to be kept consistent across the system as a
whole and have to deal with partial updates.

Thirdly, the model object managers must support a
scalable distributed query mechanism. Further, the
model repositories themselves need to be self-adapting
to changes, e.g. faults, occurring in the system. As an
ongoing effort, we are designing solutions addressing
these challenges. We are also extending the model man-
agement subsystem to provide support for histories,
transactions, and multiple consistency levels.

In a typical usage of models, schemas for the sys-
tem under consideration are designed. The designed
schemas support multiple levels of abstraction of system
information. Instances of the designed model are subse-
quently created and stored in the distributed model
repositories. They are initialized with information on
current state of the local system for which they are
responsible. Thereafter, the instance models are continu-
ously updated to reflect new states of the system.

The model repositories thus capture the complex
system information in a structured and distributed man-
ner, and they together provide a near-real time view of
the entire system (see Figure 7)

Figure 7. Model Based Automation Component

repository
models

PsEPR

wide area resources and services

distributed management services

repository
models

repository
models

repository
models

models object manager and I/F

. Our model-based
decentralized management services rely on the informa-
tion captured by models during their decision making
processes. At any given time, a particular component of
the decentralized management service selects a subset
of model repositories to obtain current system informa-
tion. The choice of this subset is statistical and depends
on various performance and locality properties.

Once the subset of model repositories is selected,
the management service chooses the level of abstraction
within the model that is most appropriate to its needs.
The decision making is then done using the incomplete
system knowledge.

We present two examples of automated manage-
ment services to illustrate the design. First, consider an

adaptation service, that determines the set of adaptation
actions to be taken in response to dynamic events.
Whenever an event occurs in the system, it is propa-
gated to the model repositories, and the model instances
are updated to reflect the event. The models at this point
have captured the complex current state of the system in
a structured meaningful manner. The adaptation service
applies reasoning on this structured information, and
determines the set of low level system wide changes e.g.
the set of redeployment actions, that need to be imple-
mented in the system.

Next, consider a resource allocation management
service that processes monitoring data collected in a dis-
tributed system. The service needs to know information
about the monitoring collectors/reporters etc. This is a
challenge in a complex, dynamic, and heterogeneous
system consisting of several hundreds of computing ele-
ments, each with their own collecting and reporting
infrastructure. With our approach, this complex infor-
mation is captured in models. The management service
is designed to only refer to the models to obtain the
information. The model is continuously updated to
reflect the new system state even in the presence of
dynamic system changes.

We are using OpenPegasus software as the basic
infrastructure for storing and retrieving CIM-based
models. The implementation of distributed model repos-
itories is currently a work in progress. Our future and
ongoing effort also includes prototyping an adaptation
service based on our model-based approach within Plan-
etlab environment.

5 Performance Evaluation

We have performed a few experiments in order to
verify the scalability of our management system. We
have performed measurements for PsEPR, WS-based
deployment, models, and the PlanetLab Data Base
(PLDB).

We were interested in comparing the performance
of two types of Web service communication: the syn-
chronous SOAP over HTTP with the asynchronous
SOAP over PsEPR. The Web service used in these
experiments is a dummy service, which simulates the
execution of a deployment operation. We have used
Axis as the Web service container for both HTTP and
PsEPR scenarios. Axis is easily integrated into Tomcat
and it also allows the transport layer to be changed. The
HTTP Web service was made available through Tomcat
and we have written a PsEPR server to substitute Tom-
cat for handling PsEPR-SOAP requests.

The PsEPR server gets a lease on a channel and
retrieves the SOAP payload received in PsEPR events.
The SOAP payload is handed to an Axis engine.The
Web service response is returned by the Axis engine to
the PsEPR server and then it is sent back to the origina-
tor of the call.

We have two clients for originating requests, one
executes synchronous communication (HTTP), which
means the client sends the request and receives the
response in the same thread, and the other executes
asynchronous communication (PsEPR), which means
the request is sent in a thread and the response is
received in an independent thread.

Our network of Web services runs on over fifty
nodes of Planet Lab, each one running a few instance of
the Tomcat and the PsEPR server totaling around sixty-
five instances of each server. In each experiment (HTTP
and PsEPR), we have measured the time taken to exe-
cute the calls to a set of Web services running on a num-
ber of nodes. A call consists of sending a request and
waiting for a response either synchronously or asyn-
chronously. We run the same experiments increasing the
size of the payloads. As described in Section 4.2,
deployment configuration schemas are distributed to
deployment targets. We wanted to verify what is the
impact of using larger SOAP envelopes (simulating
more complex schemas) on the performance of Web ser-
vice calls. Figure 8

Figure 8. SOAP over HTTP vs. SOAP over PsEPR.

2

5

8

11

14

17

0 10 20 30 40 50 60# Nodes

Ti
m

e
to

 C
om

pl
et

e
(s

)

5k http msg
2k http msg
0k http msg
5k psepr msg
2k psepr msg
0k psepr msg

 demonstrates the increase on the
time span of a deployment operation when the number
of nodes involved in the operation increases and also the
size of the payload is increased.

We conducted a few experiments to find out the
feasibility of using WSDM MUWS for our scalable
management solution. We compared Web Services

using Axis as the Service Container against MUWS.
Our experiment mainly focused on finding out how
much overhead both systems incurred when the scale
increased. We ran experiments comprising of 2 to 87
nodes on PlanetLab. Figure 9

Figure 9. Scaling management using WSDM.

shows how the two solu-
tions compared among each other with increasing scale.
The experiment consisted of making a synchronous call
to a Web Service running using WSDL and another one
running using MUWS and waiting for a response. As
you can see from the figure, WSDM has more overhead
than the WSDL based approach, but the overhead is not
significant. So, we believe that the advantage of using
WSDM MUWS outweighs the disadvantage of the
overhead.

Figure 10. SmartFrog vs Web Services based deployment
compared on increasing number of targets.

We conducted several experiments that compare
SmartFrog based deployment against our Web Services
based deployment solution. The experiments consisted
of deploying PLDB in a series of PlanetLab nodes. The
nodes were chosen from a geographically dispersed set
of locations around the world. We varied the number of
deployment nodes from 1 to 105 and found that the Web
Services based light weight solution consistently outper-

formed the SmartFrog based deployment solution in
terms of deployment time when the scale increased. The
results of this test are shown in Figure 10. The experi-
ments cemented our belief that, although Web Service
solution is perceived to perform slower and consume
more memory and CPU, the differences are less marked
in realistic applications [34]. Moreover, we believe that
some of the known advantages of the Web Services
based solution such as inter operability and extendabil-
ity simply outweigh the drawbacks. The purpose of the
experiments was not to prove that the Web Services
based solution is better than the SmartFrog based solu-
tion, but rather how Web Services based deployment is a
viable solution for large scale deployment. It doesn't
seem fair to compare SmartFrog which is feature rich
against our light weight Web Services based solution.
Nonetheless, the results are encouraging and show a pat-
tern that we expect to see in terms of scalability and
extensibility. In the future, we plan to improve our solu-
tion to have a richer functionality. We also plan to
replace the underlying communications stack from
HTTP to PsEPr. We believe that using PsEPR for
deployment will improve scalability and reliability
while the use of Web Services will improve interopera-
bility.

One of the services we have constructed based on
our eventing, deployment, and management principles
is the PlanetLab database service, a tuple-store service
providing management information for PlanetLab.
Numerous PLDB monitors running on PlanetLab
observe properties like load average, currently installed
packages, and kernel checksums which are transmitted
via PsEPR to any listening services. PLDB achieves
robustness, reliability, and high availability through ser-
vice replication. A management supervisor monitors
health of the tuple-store service and dynamically starts
and stops local monitors on a per channel basis in order
to maintain robustness, reliability and availability goals.
Figure 11 shows a set of PLDB monitors running on a
group of channels. When all the monitors on a single
node are killed, other node supervisors detect the reduc-
tion in redundancy on a per channel basis, and automati-
cally create new channel monitors to restore the service
to it's design parameters.

6 Lessons Learned

In this section we summarize some lessons learned
while exploring scalable management of global ser-
vices.

• There are trade-offs between performance and reliabil-
ity for traditional point to point communication v.

Figure 11. Flexing PLDBs

0

1

2

3

4

5

6

20
05

01
20

12
19

00

20
05

01
20

12
19

15

20
05

01
20

12
19

30

20
05

01
20

12
19

45

20
05

01
20

12
20

00

20
05

01
20

12
20

15

20
05

01
20

12
20

30

20
05

01
20

12
20

45

20
05

01
20

12
21

00

20
05

01
20

12
21

15

20
05

01
20

12
21

30

20
05

01
20

12
21

45

20
05

01
20

12
22

00

20
05

01
20

12
22

15

20
05

01
20

12
22

30

20
05

01
20

12
22

45

20
05

01
20

12
23

00

20
05

01
20

12
23

15

20
05

01
20

12
23

30

20
05

01
20

12
23

45

20
05

01
20

12
24

00

20
05

01
20

12
24

15

20
05

01
20

12
24

30

20
05

01
20

12
24

45

planet1.scs.cs.nyu.edu planetlab6.nbgisp.com planetlab3.nbgisp.com planetlab3.cs.uoregon.edu
planetlab1.nbgisp.com planetlab2.cambridge.intel-research.net planetx.scs.cs.nyu.edu planetlab5.nbgisp.com
planetlab2.cs.cornell.edu planet2.scs.cs.nyu.edu planetlab1.cs.uoregon.edu planetlab2.cs.uoregon.edu
planetlab1.cs.cornell.edu

Fault
Introduced

Recovery
Completed

loosely-coupled publish-subscribe. Our preliminary
simulation as well as real system performance mea-
surement indicated the scalability benefits of the latter.
PsEPR enables decoupling at the lowest layer. PLDB's
ability to use multiple channel monitors showed that
loose-coupling (client's finding each other in PsEPR
channels) creates easy and transparent reliability from
the client perspective.

• Decoupling at the communication layer is not enough.
We also need decoupling higher in the stack. This
requires an event-driven programming model in the
design of management services. While a fully decen-
tralized and decoupled service is ideal to handle scale,
it opens a problem in managing it. We thus end up
with building a decentralized management solution to
manage a decentralized application service, and then
we need another decentralized management solution
to manage decentralized management service, and so
on. There is still an open question in how to fine tune
the balance between decentralization and ease of man-
agement

• We decoupled the expression of dependencies from
the component model, such as in SmartFrog. This
enabled us to reason and manage the dependencies
through workflows. However, this introduced the need
to manage the expressed dependencies (install, update
as they change, etc.). There exists trade-off between
improved expressiveness and development time (e.g.
of workflows, language). As we develop higher level
of abstractions, such as expressing dependencies for
deployment, it enables more degrees of run-time
design changes.

• The proposed solution to address the complexity prob-
lem is to build solutions that capture complexity in a
structured manner, based on models. This way the
“effort” needed in dealing with complexity is being

shifted from “runtime” to “development time”. How-
ever, there is a trade-off that exists in this shift in terms
of maintenance cost, software development effort, and
disruption to existing systems design.

• There is a need to architect for global services. Ser-
vices for reliable global operation are different from
applications built for the machine room. Their require-
ments are different and rely primarily on scalability,
complexity, dealing with incomplete knowledge.

7 Summary and Future Work

We have presented a new approach for scalable
management, based on decoupling, decentralization,
and dealing with incomplete knowledge. We demon-
strated design and implementation of three system com-
ponents that contribute to the architecture of scalable
management: a scalable publish-subscribe evening, WS-
based deployment, and a model-based management. We
have evaluated performance of these components in
terms of scalability. All these features are critical for
autonomous systems of future.

In the future, we are going to explore extensions to
the WSDM interface for scalable management (multi-
cast management channels) and workflows for manag-
ing multiple interdependent components. We are also
going to add more features to our management compo-
nents and make it available as a toolkit to PlanetLab
community. We plan to capture their experience of
researchers in the form of best practices for scalable
management. One area that we specifically want to
focus on is policies and best practices for management
of large scale globally distributed services. Once we
have the basic scalable management infrastructure in
place and it is used by the PlanetLab users, we shall be
able to experiment with different policies and capture
and derive the best practices.

Acknowledgments
We are indebted to Martin Arlitt, Greg Astfalk,

Sujata Banerjee, Ira Cohen, Puneet Sharma, and Will-
iam Vambenepe for reviewing the paper. Their com-
ments significantly improved the contents and
presentation of the paper. Mic Bowman and Patrick
McGeer provided original support and ideas for pursu-
ing this effort. Dongyan Xu shepherded our paper
through the review and submission process.

References
[1] I. Foster et al, "The Physiology of the Grid: An Open Grid

Services Architecture for Distributed Systems Integra-
tion", Open Grid Service Infrastructure WG, Global Grid

Forum, June 22, 2002. http://www.globus.org/research/pa-
pers/ogsa.pdf

[2] L. Peterson, et al, "A Blueprint for Introducing Disruptive
Technology into the Internet", Proceedings of the First
ACM Workshop on Hot Topics in Networking (HotNets),
October 2002.

[3] HP OpenView http://www.managementsoftware.hp.com/.

[4] IBM Tivoli, http://www.tivoli.com/.

[5] Computer Associates Unicenter,
http://www3.ca.com/solutions/solution.asp?id=315.

[6] P. Brett, et al., “A Shared Global Event Propagation Sys-
tem to Enable Next Generation Distributed Services”,
WORLDS'04: First Workshop on Real, Large Distributed
Systems, San Francisco, CA, December 2004.

[7] V. Talwar et al., "Approaches for Service Deployment”,
IEEE Internet Computing, vol. 9, no. 2, pp. 70-80, March-
April 2005.

[8] S. White, et al., “An Architectural Approach to Autonomic
Computing,” Proceedings of the International Conference
on Autonomic Computing, pp 2-9, May 2004, New York,
NY, USA.

[9] Jeremy Stribling, “All Pairs Pings for PlanetLab” http://
www.pdos.lcs.mit.edu/~strib/pl_app

[10] “Internet Traffic Report - Global Packet Loss” http://
www.internettrafficreport.com/30day.htm

[11] V. Paxson, RFC-2988: Computing TCP’s Retransmission
Timer, http://rfc.net/rfc2988.html, November 2000

[12] David A Patterson, “Latency Lags Bandwidth”, Commu-
nications of the ACM, October 2004, pp71-75

[13] J. Dunagan, et al., “Towards A Self-Managing Software
Patching Process Using Black-Box Persistent-State Mani-
fests,” Proceedings of the International Conference on Au-
tonomic Computing, pp 106-113, May 2004, New York,
NY, USA.

[14] G. Chen and D. Kotz, “Dependency Management in Dis-
tributed Settings,” Proceedings of the International Con-
ference on Autonomic Computing, pp 272-273, May 2004,
New York, NY, USA.

[15] S. Aiber et al., “Autonomic Self-Optimization According
to Business Objectives,” Proceedings of the International
Conference on Autonomic Computing, pp 206-213, May
2004, New York, NY, USA.

[16] M.N. Huhns and M.P. Singh, “Service-Oriented Comput-
ing: Key Concepts and Principles,” IEEE Internet Comput-
ing, vol. 9, no. 1, 2005, pp. 75-81.

[17] OASIS WSDM WG Charter
http://www.oasis-open.org/committees/wsdm/charter.php

[18] WS-Management - http://msdn.microsoft.com/ws/2005/
02/ws-management/

[19] DMTF CIM, http://www.dmtf.org/standards/cim/

[20] OASIS BPEL Working Group Charter:
http://www.oasis-open.org/committees/wsbpel/char-
ter.php

[21] CDDLM Charter, https://forge.gridforum.org/projects/cd-
dlm-wg

[22] M. Happner et al.,”Java Message Service 1.1”,
http://java.sun.com/products/jms/docs.html.

[23] TIBCO Corp., “TIBCO Rendezvous”,
http://www.tibco.com/software/enterprise_backbone/ren-
dezvous.jsp

[24] R. van Renesse, K. Birman, and W. Vogels. “Astrolabe: A
Robust and Scalable Technology for Distributed System
Monitoring, Management, and Data Mining”, ACM Trans-
actions on Computer Systems, Vol. 21, No. 2, pp. 164-206,
May 2003.

[25] P.R. Pietzuch “Hermes: A Scalable Event-Based Middle-
ware”. Ph.D. thesis, Computer Laboratory, Queens' Col-
lege, University of Cambridge, February 2004.

[26] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A.
Ford, "T Spaces", IBM Systems Journal, Vol. 37, No. 3, pp.
454-474, 1998.

[27] M. Narayanan, et. al., “Approaches to asynchronous Web
services”, http://www-106.ibm.com/developerworks/web-
services/library/ws-asoper/

[28] IBM Corporation. MQSeries: An Introduction to Messag-
ing and Queueing. Technical Report GC33-0805-01, IBM
Corporation, June 1995. http://ftp.software.ibm.com/soft-
ware/mqseries/pdf/horaa101.pdf.

[29] T. De Wolf, et al., “Towards Autonomic Computing:
Agent-based Modeling, Dynamical Systems Analysis, and
Decentralized Control”, Proc 1st Int’l Workshop on Auto-
nomic Computing Principles and Architectures 2003.

[30] Oppenheim, K., and MCormick, P., .Deployme: Tellme.s
Package Management and Deployment System,. Proceed-
ings of the Usenix IVth LISA Conference, December
2000, New Orleans, pp187-196

[31] Jeff Magee, Jeff Kramer, and Morris Sloman. Constructing
Distributed Systems in Conic. IEEE Transactions on Soft-
ware Engineering, 15(6):663--675, June 1989

[32] Mark Burgess, “A Site Configuration Engine”, USENIX
Computing Systems, Vol8, no 3, 1995, http://
www.cfengine.org

[33] P. Goldsack, et al., “Configuration and Automatic Ignition
of Distributed Applications”, 2003 HP Openview Univer-
sity Association conference.

[34]N.A.B. Gray, "Comparison of Web Services, Java-
RMI, and CORBA service implementations", Proc.
of Fifth Australasian Workshop on Software and
System Architectures (ASWEC), April 2004.

	Scalable Management
	Technologies for Management of Large-Scale, Distributed Systems
	Robert Adams†, Paul Brett†, Subu Iyer, Dejan Milojicic, Sandro Rafaeli, Vanish Talwar
	HP Labs, Intel†
	Abstract
	1 Introduction
	1.1 Motivating Scenarios

	2 .Dealing with Scale and Complexity
	Figure 1 . Comparison of managing approaches: centralized, hierarchical (spanning tree) and publish-subscribe (simulated).
	Figure 2 . A Number of Complex Service Changes as a function of scale & Complexity. The scale is shown with respect to number of app servers which are affected by the dynamic event.

	3 Related Work
	Figure 3 . High Level Architecture

	4 Architecture, Design, and Implementation
	4.1 PsEPR/PLDB
	Figure 4 . PsEPR Infrastructure and PLDB
	Figure 5 . Deployment Components

	4.2 Deployment
	4.3 Model-based Automation
	Figure 6 . Conceptual partial view of the PLDB and the underlying infrastructure model.
	Figure 7 . Model Based Automation Component

	5 Performance Evaluation
	Figure 8 . SOAP over HTTP vs. SOAP over PsEPR.
	Figure 9 . Scaling management using WSDM.
	Figure 10 . SmartFrog vs Web Services based deployment compared on increasing number of targets.
	Figure 11 . Flexing PLDBs

	6 Lessons Learned
	7 Summary and Future Work

	Acknowledgments
	References
	[1] I. Foster et al, "The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration", Open Grid Service Infrastructure WG, Global Grid Forum, June 22, 2002. http://www.globus.org/research/papers/ogsa.pdf
	[2] L. Peterson, et al, "A Blueprint for Introducing Disruptive Technology into the Internet", Proceedings of the First ACM Workshop on Hot Topics in Networking (HotNets), October 2002.
	[3] HP OpenView http://www.managementsoftware.hp.com/.
	[4] IBM Tivoli, http://www.tivoli.com/.
	[5] Computer Associates Unicenter, http://www3.ca.com/solutions/solution.asp?id=315.
	[6] P. Brett, et al., “A Shared Global Event Propagation System to Enable Next Generation Distributed Services”, WORLDS'04: First Workshop on Real, Large Distributed Systems, San Francisco, CA, December 2004.
	[7] V. Talwar et al., "Approaches for Service Deployment”, IEEE Internet Computing, vol. 9, no. 2, pp. 70-80, March- April 2005.
	[8] S. White, et al., “An Architectural Approach to Autonomic Computing,” Proceedings of the International Conference on Autonomic Computing, pp 2-9, May 2004, New York, NY, USA.
	[9] Jeremy Stribling, “All Pairs Pings for PlanetLab” http:// www.pdos.lcs.mit.edu/~strib/pl_app
	[10] “Internet Traffic Report - Global Packet Loss” http:// www.internettrafficreport.com/30day.htm
	[11] V. Paxson, RFC-2988: Computing TCP’s Retransmission Timer, http://rfc.net/rfc2988.html, November 2000
	[12] David A Patterson, “Latency Lags Bandwidth”, Communications of the ACM, October 2004, pp71-75
	[13] J. Dunagan, et al., “Towards A Self-Managing Software Patching Process Using Black-Box Persistent-State Manifests,” Proceedings of the International Conference on Autonomic Computing, pp 106-113, May 2004, New York, NY, USA.
	[14] G. Chen and D. Kotz, “Dependency Management in Distributed Settings,” Proceedings of the International Conference on Autonomic Computing, pp 272-273, May 2004, New York, NY, USA.
	[15] S. Aiber et al., “Autonomic Self-Optimization According to Business Objectives,” Proceedings of the International Conference on Autonomic Computing, pp 206-213, May 2004, New York, NY, USA.
	[16] M.N. Huhns and M.P. Singh, “Service-Oriented Computing: Key Concepts and Principles,” IEEE Internet Computing, vol. 9, no. 1, 2005, pp. 75-81.
	[17] OASIS WSDM WG Charter http://www.oasis-open.org/committees/wsdm/charter.php
	[18] WS-Management - http://msdn.microsoft.com/ws/2005/ 02/ws-management/
	[19] DMTF CIM, http://www.dmtf.org/standards/cim/
	[20] OASIS BPEL Working Group Charter: http://www.oasis-open.org/committees/wsbpel/charter.php
	[21] CDDLM Charter, https://forge.gridforum.org/projects/cddlm-wg
	[22] M. Happner et al.,”Java Message Service 1.1”, http://java.sun.com/products/jms/docs.html.
	[23] TIBCO Corp., “TIBCO Rendezvous”, http://www.tibco.com/software/enterprise_backbone/rendezvous.jsp
	[24] R. van Renesse, K. Birman, and W. Vogels. “Astrolabe: A Robust and Scalable Technology for Distributed System Monitoring, Management, and Data Mining”, ACM Transactions on Computer Systems, Vol. 21, No. 2, pp. 164-206, May 2003.
	[25] P.R. Pietzuch “Hermes: A Scalable Event-Based Middleware”. Ph.D. thesis, Computer Laboratory, Queens' College, University of Cambridge, February 2004.
	[26] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford, "T Spaces", IBM Systems Journal, Vol. 37, No. 3, pp. 454-474, 1998.
	[27] M. Narayanan, et. al., “ Approaches to asynchronous Web services”, http://www-106.ibm.com/developerworks/webservices/library/ws-asoper/
	[28] IBM Corporation. MQSeries: An Introduction to Messaging and Queueing. Technical Report GC33-0805-01, IBM Corporation, June 1995. http://ftp.software.ibm.com/software/mqseries/pdf/horaa101.pdf.
	[29] T. De Wolf, et al., “Towards Autonomic Computing: Agent-based Modeling, Dynamical Systems Analysis, and Decentralized Control”, Proc 1st Int’l Workshop on Autonomic Computing Principles and Architectures 2003.
	[30] Oppenheim, K., and MCormick, P., .Deployme: Tellme.s Package Management and Deployment System,. Proceedings of the Usenix IVth LISA Conference, December 2000, New Orleans, pp187-196
	[31] Jeff Magee, Jeff Kramer, and Morris Sloman. Constructing Distributed Systems in Conic. IEEE Transactions on Software Engineering, 15(6):663--675, June 1989
	[32] Mark Burgess, “A Site Configuration Engine”, USENIX Computing Systems, Vol8, no 3, 1995, http:// www.cfengine.org
	[33] P. Goldsack, et al., “Configuration and Automatic Ignition of Distributed Applications”, 2003 HP Openview University Association conference.
	[34] N.A.B. Gray, "Comparison of Web Services, Java- RMI, and CORBA service implementations", Proc. of Fifth Australasian Workshop on Software and System Architectures (ASWEC), April 2004.

