
Virtualization in the Enterprise

Intel® Virtualization Technology

Intel®

Technology
Journal

Volume 10 Issue 03 Published, August 10, 2006 ISSN 1535-864X DOI: 10.1535/itj.1003

More information, including current and past issues of Intel Technology Journal, can be found at:
http://developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm

Intel Technology Journal, Volume 10, Issue 3, 2006

Virtualization in the Enterprise 227

Virtualization in the Enterprise

Patrick Fabian, Technology and Manufacturing Group, Intel Corporation
Julia Palmer, Information Technology, Intel Corporation

Justin Richardson, Information Technology, Intel Corporation
Mic Bowman, Corporate Technology Group, Intel Corporation

Paul Brett, Corporate Technology Group, Intel Corporation
Rob Knauerhase, Corporate Technology Group, Intel Corporation

Jeff Sedayao, Information Technology, Intel Corporation
John Vicente, Information Technology, Intel Corporation

Cheng-Chee Koh, Information Technology, Intel Corporation
Sanjay Rungta, Information Technology, Intel Corporation

Index words: virtualization, use cases, case studies, enterprise IT

ABSTRACT

We present how an enterprise IT organization sees
virtualization in the enterprise and how it can be applied.
We look at key enterprise services and applications used
within Intel’s IT department and examine the issues
associated with virtualizing servers within the context of
those services. We demonstrate that virtual machine (VM)
isolation does not extend to performance isolation as we
show how applications running in separate VMs can
significantly interfere with each other. Enterprise services
depend on host characteristics like available cycles,
platform configurations, and on proximity to other
services. We define a taxonomy of these dependencies
derived from our study. Next, we describe uses of Intel®
Virtualization TechnologyΔ (Intel® VT) that we are
investigating. The ability to run multiple operating
systems (OSs) is of great interest in our design
environment where highly specialized tools are tied
closely to OS versions. The ability to checkpoint, suspend,
resume, and migrate VMs is very useful when we run long
simulations. The ability to allocate VMs at the location of
choice opens up other possible use cases, such as network
monitoring, security monitoring, and content distribution.
We see this capability also enabling safe yet realistic
experimentation, as a way to extend virtualization into
clients. Finally, we present a real case study applying
virtualization to enterprise IT problems. This
virtualization program achieved higher server utilization,
made it easier to manage datacenter assets, and reduced
the consumption of datacenter resources (floor space,
power, etc.), as well as simplified server releases through
standardization.

INTRODUCTION
Virtualization is touted as a new and upcoming trend in
computing. Simply stated, virtualization is a technology to
run multiple independent virtual operating systems (OSs)
on a single physical computer. It is not a particularly new
idea in the enterprise, having been implemented in the
1960s on IBM mainframes [1].

A number of characteristics of virtualization make it a
much discussed topic of conversation today. One is the
potential to better use compute resources, allowing an
enterprise to maximize its investment in hardware. In an
average datacenter, the majority of the infrastructure
resources are used about 25% of the time. Virtualizing a
large deployment of older systems on fewer highly
scalable, highly reliable, modern, enterprise-class servers
significantly reduces hardware costs for infrastructure
services. Multiple hardware and software solutions are
available on the market and ready to provide a secure,
easily managed platform to deploy, manage, and remotely
control VMs.

Virtualization offers so much more than just server
consolidation. Intel’s IT organization has been studying
other uses of virtualization that can add tremendous value
to an enterprise. Virtualization features such as the ability
to suspend, resume, checkpoint, and migrate running VMs
is extremely useful in dealing with long running jobs. If a
VM with a long running job checkpoints its state and then
the physical machine it is on fails for some reason, the job
can be restarted from where it left off, along with the VM,
rather than being restarted from the beginning.

Intel Technology Journal, Volume 10, Issue 3, 2006

Virtualization in the Enterprise 228

A key difference of virtualization today and the
mainframe age is the ability to allocate a VM at the
location of a service’s choice. This notion of Distributed
Virtual Machines (DVMs) opens a whole host of possible
uses, such as network monitoring, security policy
validation, and content distribution. It enables enterprises
to create such things as virtual secure enclaves and do safe
yet realistic testing of large scale, even planetary scale,
services. This idea is useful and compelling enough to
power the PlanetLab testbed [2], which is slated to
become a core part of a next-generation Internet project
called GENI [3].

Virtualization, while a viable technology today, is not
without issues. Allocating VMs for enterprise services is
not as simple as finding the first available host. Services
have dependencies on network topology and other
services. Also, VMs, while offering many types of
isolation, do not offer complete performance isolation.
VMs can interfere with each other.

This paper examines the virtualization of physical host
machines, enterprise services, and multi-site instantiation
of virtual environments. First, we introduce the difficulty
of virtualizing enterprise service host machines. Second,
we discuss use cases that can give IT organizations many
new options in supporting their company’s business units.
Third, we review a case study of server virtualization for a
business group at Intel and the process they followed from
project inception through implementation. We conclude
the paper with a discussion of our results and a description
of future work.

CHALLENGES OF VIRTUALIZATION IN
THE ENTERPRISE
For batch-oriented tasks, provisioning VMs and getting
predictable performance appears to be relatively
straightforward. This seemly simple task can be difficult if
VMs interfere significantly with each other. When we
introduce virtualization with enterprise services like the
Domain Name System (DNS) [4], VM provisioning
becomes more complex, especially as the location of the
physical machine hosting the VM becomes important. In
this section, we describe the challenges of server
virtualization in an enterprise context.

Studying the Issues of Virtualization in the
Enterprise
Our approach to studying the issues of virtualization in the
enterprise had two parts. First, we looked at how VMs
running on the same physical host could affect each other,
particularly when different applications were running on
the VMs. Second, we looked at key enterprise services

and investigated how these services would fare in a virtual
environment.

This is how we studied virtual machine interference:

• We obtained baseline performance (a control) of an
application running on one VM.

• We attempted to optimally degrade the performance
of one of two VMs running on the host, typically by
attempting to use some shared resource.

• We documented and analyzed the results.

Once we had studied how individual VMs interact on one
physical host, we looked at how VMs would interact in an
enterprise. We first looked at the services that are the most
critical and generate the most volume on the Intel Wide
Area Network (WAN). Our goal was to examine those
applications for performance bottlenecks and platform
dependencies that would be problematic when servers for
those applications and services would be virtualized. In
addition, we also looked for five additional applications
commonly used within Intel. For all of these services and
applications, we searched for information on the Web and
talked to IT personnel who are expert at running them in
Intel’s IT environment, looking for the issues mentioned
previously.

VM Interference
VMs, as a technology, offer many advantages to users and
administrators. Security isolation prevents a malicious
application from accessing data or altering running code.
Fault isolation prevents one misbehaving application from
bringing down the whole system—rather than rebooting
the box, one can simply reboot the VM. Environment
isolation allows multiple OSs to run on the same machine,
accommodating legacy applications and cutting-edge
software alike.

While VMs offer these forms of isolation, we have
observed that modern VM environments [4, 5] do not
really provide performance isolation. While in theory, the
virtual machine manager (VMM, also known as the
hypervisor) “slices” resources and allocates shares to
different VMs, there are still ways in which the behavior
of one VM can adversely affect the performance of
another. Furthermore, the isolation that VMs provide
limits visibility of an application in a VM into the cause(s)
of performance anomalies that occur in a virtualized
environment. Contemporary platforms with Intel VT,
however, provide mechanisms that we can use to detect
and classify performance interference, which can then be
used for a number of purposes:

• As input to the local scheduler, which can alter its
behavior (e.g., change quanta or ordering) to
ameliorate the effects of the interference.

Intel Technology Journal, Volume 10, Issue 3, 2006

Virtualization in the Enterprise 229

• As input to a global scheduler, or orchestration
engine, which uses the information to rearrange the
placement of VMs to minimize interference and
improve performance.

• As “metering” data, so that systems that charge for
usage (e.g., free-market allocation systems such as
HP Labs’ Tycoon* [6], grid computing pay-per-cycle
or “cycle-rental” schemes, etc.) can more accurately
charge/credit users for the resources they
consume/provide.

Our research to date has shown that shared state in
resources under contention can indeed dramatically affect
the performance of a VM, beyond the expected
performance degradation that is due to simple time-slicing
of the resource.

The first type of interference we studied was the
interference within the processor’s L2 cache and to server
state (disk head position, cache state, etc.). We designed
experiments to quantify these types of interference by
running “benchmark” workloads against other VMs with
code designed to be explicitly pessimistic in terms of
interference to that particular benchmark. Our results
show that in each case, there can be a non-negligible
effect on the benchmark’s performance.

For the cache experiment, we wrote code to continuously
write to a large (bigger than the L2 cache) array in one
VM to show how this would interfere with a memory-
intensive application in another VM. We looked at the
Freebench test suite [7] because it was freely available and
had been used in other VMM performance testing [8]. We
selected Freebench’s analyzer benchmark as an
application. The analyzer’s performance is limited by the
memory subsystem, making it a good candidate for cache
interference. It runs a deterministic computation, so we
used time-to-completion as our measurement of
performance.

Our experiments compared the runtime of the program
versus another VM executing a simple spinloop. Because
of this, the slowdown seen can be attributed directly to
cache interference (i.e., its degradation is due to more than
simply sharing half the CPU with another VM). We ran
our experiment on several types of Intel® platforms, with
varying configurations. A typical run is shown in Figure 1.
As the amount of cache used by our interference-
generating application increases, the slowdown in
application performance increases. That a dirty cache
slows down an application’s execution is not surprising;
however, the application and its OS are completely
unaware that the cache is being dirtied, and because they
are running on a VM, typical techniques (e.g., OS task
scheduling) are unavailable. With Intel VT features, we
are able to determine the interference and provide that

information to higher-level constructs (e.g., the hypervisor
scheduler, or a global orchestration system) as mentioned
above.

Figure 1: Performance degradation as cache is
increasingly dirtied

We also ran tests for storage interference. The simplest
example entailed two VMs accessing the same disk
device, to most easily demonstrate head-position and disk-
cache state (outside the VM). Our results (as in the CPU
cache case that we compared against a simple spinloop
VM) showed similar amounts of additional degradation—
between 50% and 90% depending on the nature of the
disk access (sequential/random and character/block).

Virtualization and Service Dependencies
To get the list of critical network services, we consulted
with Intel IT’s WAN engineers. They reported the
following are the five most critical network services:

• Exchange*

• DNS

• Active Directory*

• Chip design associated file transfers

• Web proxy traffic

In addition, we studied the following internal applications:

• Internet Information Server (IIS*)

• Apache Web server*

• SQL server*

• Oracle

• Sendmail*

We looked at a number of service orchestrators also. We
looked at how Oracle orchestrates its operations, as well
as the IBM/Auremia director*, the HP Workload
Manager*, the 3-DNS* and Big IP* load balancers from
F5, and Microsoft’s Visual Studio 2005*. To do this, we

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

140.0%

160.0%

180.0%

200.0%

0 0.5 1 1.5 2

Array's Proportion to Cache Size

P
er

ce
n

ta
g

e
o

f
P

er
fo

rm
an

ce

D
eg

ra
d

at
io

n

Analyzer Time

Intel Technology Journal, Volume 10, Issue 3, 2006

Virtualization in the Enterprise 230

looked at documentation as well as talked to operational
experts within Intel’s IT organization. In addition, we
found that some services and applications like DNS,
Sendmail, and Active Directory, have some mechanisms
that perform orchestration functions.

We found that service platform dependencies fall into the
following categories:

• Network

• Host/System

• Storage

• Services

We next discuss these dependencies and emphasize the
aspects that are typically not covered by service
orchestrators. At the end of each section, we describe
constraints that need to be specified by orchestrators to
deal with these dependencies, since these would be
additional concerns with provisioning VMs for those
services.

Network

We found that services had a number of network
dependencies that are not typically dealt with by service
orchestrators. Often these dependencies rely on network
topology specifics. One example is the Web proxy service
offered by Intel IT. This service proxies Web traffic
between systems on the internal Intel network and the
Internet and reduces network traffic by caching Web
pages already fetched. The proxy service maintainers
require that a directly connected proxy (with direct access
to the Internet) has a high bandwidth network path to the
Internet. For fairly large Intel sites with low bandwidth
links to the Intel® WAN, Intel® IT deploys a proxy server
locally and chains this proxy server to another. While
some orchestration specification languages like JSDL [9]
allow conditions to be set on network bandwidth, they do
not address network topology.

Intel’s DNS service relies on multiple network
connections from a site for deployment. Intel sites with
only one connection to the Intel® internal WAN have DNS
servers deployed to them. Multiple and reliable network
connectivity is a dependency for the DNS service.

DNS also monitors query latencies and uses them to
generate basic orchestration functionality. It records the
time it takes to process queries for a domain and uses the
name servers for that domain that respond the fastest. In
this case, network latency is a significant contributor to
how the DNS service behaves and partitions work.

Some services want to see a specific number of network
interfaces on the platform. Some deployments of the
Oracle database system require three network interfaces.

One of the network interfaces is used for heartbeat
information between servers and requires low latency.
Other services assume that they have a network interface
(or at a minimum, an IP address on an interface) that can
be directly reached at a particular port. This applies to
services that use well known ports, such as Web servers
like Apache or Microsoft IIS. While Web servers can do
virtual hosting, they assume that a standard HTTP port is
directly reachable, and in a virtualized environment, this
implies that there is an IP address per each VM that runs a
Web server. For each IP address, it is assumed that there
is a MAC address associated with that interface, and that
there is a way to route packets to each VM.

We define network constraints that we need to manage as
follows:

• Minimum bandwidth between server hosting service
and particular points.

• Topology and availability requirements, in particular
minimum availability and/or a minimum number of
paths from a server’s location to other locations.

• Minimum or a specific number of network interfaces.

• Maximum latency between server and other servers.

Host

We found two notable host dependencies that are not
covered by orchestration service specifications. The first
is a dependency on a fixed amount of CPU resources. A
commonly used mail forwarding program called Sendmail
depends on the notion of load average to decide whether
to queue up mail or whether to reject mail connections. In
a virtual environment where resources are shared equally
among VMs, an application cannot be certain whether it
will receive the same amount of CPU resources since
other VMs may be assigned to the same physical host it
runs on. Thus, using load average is not an accurate
indicator of the available resources.

The second host dependency is non-pageable memory.
The Exchange mail service relies on having a significant
amount of memory that cannot be paged out for good
performance. While orchestrators allow you to specify
how much memory a job or service may require, there do
not seem to be options for non-pageable memory.

Service Affinity/Proximity Requirements

One key service dependency that is not always captured in
orchestrators is affinity or proximity to other services. A
good example is Exchange and Active Directory.
Exchange requires fast responses from Active Directory.
Operationally, an Active Directory server should be on the
same segment as an Exchange server. Deviations from
this configuration have proven disastrous operationally.

Intel Technology Journal, Volume 10, Issue 3, 2006

Virtualization in the Enterprise 231

An additional aspect of service dependency is the need for
a maximum time to complete a service’s basic
transactions. DNS operations personnel recommend that
DNS queries must be resolved within one second in order
to prevent applications that rely on DNS from hanging.

Storage

Some applications rely on specific platform features. For
example, some versions of Oracle require that Oracle
write directly to disk blocks. Other applications, such as
Active Directory, require large disk-write caches.

OTHER USE CASES FOR VIRTUAL
MACHINES IN THE ENTERPRISE
Virtualization is typically discussed in the context of
datacenters, where multiple VMs are loaded onto a single
host to increase server utilization or reduce the cost of
buying new hardware. We cover this use case extensively
in an upcoming section. Virtualization enables other
capabilities that can be extremely useful to enterprises.
We now discuss enterprise use cases for virtualization that
go beyond the usual examples of increased utilization,
which are being investigated by Intel’s IT organization.
We start with ways to enhance the operation and
efficiency of large-scale computation. We then talk about
distributing virtualization, and how the ability to allocate
VMS in the location of choice opens up new applications
and paradigms for service deployment.

Enhancing Standardization
While a completely homogeneous computing environment
would yield obvious efficiencies, it is generally not
realistic. Intel’s design environment supports a huge
variety of software tools for a diverse roster of design
teams, some of whom joined Intel as a result of
acquisitions. The design environment employs laptop PCs,
dedicated compute servers, and everything in between.

In this complex environment, virtualization could achieve
many of the efficiencies of homogeneity. A software tool
could be bundled with its own specialized virtual
computing environment. When a new version of this
bundle is standardized, it could be quickly pushed out to
all sites on top of VMMs without requiring expensive and
time-consuming OS upgrades. This is especially helpful to
small sites which often lack sufficient staff, and sometimes
lack even all the required computing platforms, to
implement a never-ending stream of company-wide
directives.

Making it easy and inexpensive to push out new standard
images to all sites not only reduces costs, but accelerates
innovation, because it frees a small team to develop
specialized expertise in a product and to support it
worldwide instead of relying on generalists dispersed

across many teams. It enables the leveraging of good ideas
and fixes from any of these specialized groups, because
these fixes and ideas can be quickly and easily applied
everywhere.

Legacy Operation
Closely related to the standardization issue is an inevitable
heterogeneity across time. OSs and microprocessor
architectures evolve, and they sometimes even die. Yet
important legacy software tools that depend on particular
OS versions are often useful far into the future. It is
expensive and sometimes insecure to maintain special-
purpose “classic” configurations. In addition, tools that
run on them can’t ride Moore’s Law to ever better
performance.

If snapshots of such classic configurations were
encapsulated as VMs, then they could be inexpensively
“revived” whenever and wherever needed and on
enhanced hardware, resulting in the associated tool being
executed faster.

This strategy would also be useful for any application that
is run only occasionally, especially if it needs to or is
expected to run on a dedicated server. For example,
during a downtime, whether planned or unplanned, a
temporary mail forwarding server could be activated at
some unaffected site. This approach reduces not only
costs, but also the risk that an infrequently used
application has fallen behind and is now incompatible
with changes in the computing environment. Such
incompatibilities are typically discovered at the worst
possible time, that is, at the exact moment when the
application is needed.

Checkpointing
A grand reliability goal is to guarantee to users that no job
will ever fail to complete for external reasons, such as a
machine reboot, a power outage, a disk crash, or even a
catastrophic failure such as an earthquake. An important
enabling technology that would be immediately useful is
the automatic checkpointing of a VM.

It should be possible to schedule a periodic saving of the
VM state that could be used to go back in time and replay
history from that archived moment, but without the
externally induced failure. Less frequently, redundant
copies of the state could be stored away remotely, at a rate
correlated with the probability of various risks which grow
with the duration of the task. For example, a simulation of
the earth’s climate that required a year of calendar time to
complete would almost certainly be disrupted during that
year by some external event. It could be argued that the
more sophisticated the application, the more likely its
developers are to have already built in checkpointing
mechanisms. But even if we ignore the fact that many real

Intel Technology Journal, Volume 10, Issue 3, 2006

Virtualization in the Enterprise 232

applications disregard checkpointing altogether,
application-level checkpointing mechanisms can’t
reasonably be expected to cope with catastrophic failures.
Where should the application save its own state to protect
against fire and flood?

Checkpointing could obviate the need for engineers to
submit redundant jobs as insurance. Today, the longer or
more critical a task, the more likely it is to run multiple
instances of the same job, causing the actual resource
utilization for a computing task to be much larger than the
resource requirements for an individual job might
indicate. With VMs and checkpointing, a single job would
only need to be run once because it could be resumed
elsewhere, even if there were an external failure.
Likewise, if a machine must be rebooted for OS patches, a
planned site-wide downtime, or simply as an attempt to
put it back into a good state, the tasks running on it could
be terminated easily enough and resumed on some other
machine. This eliminates the need to prevent long jobs
from being submitted days in advance of such
maintenance and the temptation to postpone prudent
maintenance because of the speed bump it throws into
user schedules.

In the long-term, a VM could support some analog of
apoptosis (programmed cell death), killing itself when it
detects errors. A daemon could automatically roll back
(terminate and then reincarnate elsewhere) any VM that
hasn’t recently enough provided proof that it is healthy.

An issue that needs to be investigated is how to deal with
external (non-virtual) state elements, such as the actual
current calendar time and ongoing network
communications, that can’t be checkpointed. Another key
issue concerns licensing. Some software applications
require a license for physical CPU, while others require a
license per actively running copy. The issues of program
state and licensing need to be answered when deploying
VM checkpointing in the enterprise.

Performance Isolation
When choosing a shared computing resource, such as a
server on which to run a VNC [10] session, it’s difficult to
predict the impact of contention. The longer the task, the
greater the chance that some other user may consume an
unfair share of the resource and degrade one’s own
effectiveness. Although using VM checkpointing could
enable the victims to pick up and move to “greener
pastures,” it would be better to prevent a “tragedy of the
commons.” If we can ration real-world computing
resources by configuring the parameters (memory size,
processor speed, disk access speed, etc.) of each VM
assigned to a task, then limits on consumption would be
inherent to the resource capacity of the VM that task is
running in. A number of VMMs are capable of allocating

computing resources and of performing a measure of
performance isolation. While we have shown in a previous
section that VMs can significantly interfere with each
other, particularly through the interactions of shared
resources like the cache, there are other resources like
CPU cycles and memory that can be allocated in a way
that significantly isolates the performance effects of tasks
from each other.

Distributed Virtual Machines
The ability to allocate VMs at the location of choice is a
capability we call Distributed Virtual Machines (DVM).
DVMs enable a whole host of possible applications and
servers. Throughout this section, we use the terms
distributed virtualization, overlays, and distributed virtual
machines, interchangeably. We view DVM as the
methodology of choice for realizing robust,
computationally rich, networked virtualization and for
implementing overlays.

The Origins and Impact of DVM

One of the earliest and most successful implementations
of DVMs is PlanetLab [2]. PlanetLab is a world-wide
overlay network with over 689 nodes at 334 locations
around the world. Designed to be a testbed and
deployment platform for researchers to study planetary-
scale distributed systems and services, PlanetLab has
distributed virtualization at its core. Researchers allocate a
“slice,” a set of VMs, at the locations of their choice.
Using VMs allows the researchers to develop and deploy
innovative new services that do not interfere with each
other on the same physical hosts. Using this model of
computing, several innovative services with content
distribution [11] and network measurement [12] were
developed and deployed. These types of applications, and
the way that PlanetLab was designed for the safe
development and deployment of services, have
implications for the way that DVM can be used by
enterprises.

Network Monitoring

A global organization has many Internet users scattered
across the planet. Some are Intel customers, some are
suppliers, and some are employees. Employees can be
within Intel’s firewalls or working remotely from home or
from customer sites located anywhere on the globe.
Services that are utilized include Web sites such as Intel’s
corporate presence at www.intel.com, various e-commerce
applications, and VPN connectivity back into Intel. This
requirement for global access can result in Intel’s Network
Operation Center (NOC) receiving complaints about
performance from any spot on the planet to any one of
Intel’s many DMZ zones. For example, the NOC might
get a call from a user in China saying that the response for

Intel Technology Journal, Volume 10, Issue 3, 2006

Virtualization in the Enterprise 233

an e-commerce application is very poor. Is the problem
local to China? Is the problem local to the Internet
connection in question? Is the problem Internet-wide? The
NOC needs tools to be able to answer those questions.

A key question is where to monitor. The typical DMZ
firewall model lends itself to monitoring the DMZ systems
from within the DMZ. This ends up creating a monitoring
model with limited scope that does not address problems
with transit from anywhere in the world to the DMZ. An
alternative would be an approach that examined Web logs
for performance problems [13] or looked at traffic flow
data using Cisco NetFlow* [14]. Because of our traffic
volume and the fact that we didn’t have Web servers at all
of our Internet DMZs, we ruled out this option. It would
be extremely useful to be able to proactively monitor for
performance problems all around the world using active
measurements. Active measurements from regions in the
world could be taken from commercial services like
Keynote* [15] or from hosts in datacenters strategically
placed around the world. Using commercial services
would limit the kind of applications we could run to
monitor the DMZs and it could be fairly expensive.
Deploying our own hosts in the locations around the world
from where we want to monitor would permit much more
flexibility, but would be even more expensive.

DVM presents a relatively inexpensive and flexible
platform for global-scale monitoring, but poses challenges
with software distribution and application management.

Security Monitoring

The traditional, closed network control model has
disadvantages in protecting the enterprise networks from
distributed network attacks because of data inaccuracy,
inability to perform overall impact analysis, and lack of
data correlation from distributed sources in large
networks. As more and more enterprises move towards
relatively “open” perimeters (sometimes without realizing
it as through unauthorized wireless access points and VPN
connectivity) and distributed network environments in
order to meet business demands, the associated
provisioning and management cost will consequently
increase, as will the complexity. The IT infrastructure
needs to be able to provision security requests quickly and
be pre-positioned and ready for such requests. The notion
of trusted and un-trusted network zones is fast changing in
today's enterprise network. Enterprise networks are no
longer a simple 2-trust level like they were a few years
ago with “internal trusted” and “external un-trusted”
zones. The requirement for protecting the resources at the
service level is becoming more a reality, and the
infrastructure to support this is at best expensive and
difficult to justify from an IT security standpoint. Also,
simply implementing network and service-level security
such as firewalls, IPS, anti-virus, and a whole slew of

defenses is not sufficient. In order to ensure these complex
network and service-level security enforcements are
functioning as desired, an automated and proactive
security monitoring system is becoming more essential for
enterprises. Proactive network security monitoring is
required to validate the security implementations,
patching, and provisioning of software to ensure it is not
vulnerable to the most recent threats and to avoid costly
network downtimes, security incidents, denial of service
attacks, and worm and malware attacks, all of which
impact productivity and service availability. In addition,
regulatory and legal compliance requirements, such as the
U.S. HIPAA, Sarbanes Oxley regulations and European
privacy laws, are getting more strict for all types of
enterprises to ensure they are following the rules to protect
their assets, resources, and information.

Vulnerability scanning for the enterprise network to
ensure compliance to minimum security specifications and
auditing of network security policy to ensure it is
implemented per the documented enterprise security
policy are examples of add-on security monitoring that the
enterprise IT would like to deploy extensively but which
is limited due to the static nature of deploying these
applications. Using the DVM approach, the ability to
create instances/clones of systems that would be able to
generate the required security monitoring functions would
be extremely simplified. In addition, it would help create
multiple views for network security assessments and
monitoring. For example, in order to assess the
effectiveness of network security implementations, such as
firewalls, IPS, authentication/authorization, and other
security enforcements, enterprises would have to perform
the network security assessments/audits/scans from
various parts of the network, such as from within the
DMZ/internal network and from the external connected
network. This would not only help validate the overall
picture of the security posture for the network but also
ascertain whether the implemented controls are sufficient.
With DVM and the ability to “suspend, copy and resume”
a VM, network security becomes relatively simple and
cost effective. Another advantage of being able to
inexpensively create multiple instances of the network
security monitoring system would be to increase the
speeds and parallelism of the results. Network security
monitoring is then transformed from an infrequent and
expensive annual or quarterly audit to a proactive one that
can identify and fix security vulnerabilities as soon as they
appear on the network.

The DVM approach to network security monitoring as
discussed above would help reduce the cost of
provisioning these relatively complex
auditing/monitoring/scanning applications as compared to
the traditional method of static provisioning of standalone
security monitoring systems. Using the DVM approach

Intel Technology Journal, Volume 10, Issue 3, 2006

Virtualization in the Enterprise 234

would reduce the capital costs of the hardware and the
cost of the provisioning tasks required to maintain
physical systems for these functions. Operational costs for
network security operational staff would also be reduced
as network staff would be able to leverage the network for
simplicity of “on-demand” VMs for the network security
monitoring functions. Using the classical server/operating
system/application model, and not the DVM model, it is
almost impossible to monitor to the level required to be
proactive enough to identify security gaps before they are
widely exploited.

Content Delivery

A content delivery overlay provides a common service to
various applications such as distributed file storage and
sharing. Each overlay node maintains a small overlay
routing table for finding the destination with the shortest
path length of complexity O(logn), where n is the network
size. But these overlay search algorithms make the
underlying network transparent to the overlay and only
find the shortest search path in terms of the number of
virtual hops in the overlay.

Safe Yet Realistic Experimentation

A challenging aspect of enterprise environments is the
difficulty of testing and introducing new or innovative
services into an established infrastructure. Changes are
strictly controlled because changes in the computing
environment can negatively affect critical enterprise
services. This is particularly true when introducing new
services to an already running physical host. The new
service or application may require system libraries and
other software that could potentially break existing
services if introduced. Moreover, usage loads introduced
by new services on existing infrastructure (both network
and CPU) can potentially starve existing services. Thus,
the traditional enterprise approach is to bundle new
hardware with each new service. Deploying new hardware
for each additional service severely slows the introduction
of new services, adds to the Total Cost of Ownership
(TCO), and further complicates change control. Testing of
new services is often done in isolated lab environments,
where realistic conditions are difficult, if not impossible,
to replicate.

Alternatively, the ability to create VMs that are effectively
isolated from each other and share resources fairly
resolves these problems. The fundamental idea here is to
decouple the introduction of new services from the
deployment of new hardware. New services can be
deployed on existing hardware by allocating VMs in the
preferred service locations. The VM isolation shields
existing services from library conflicts with new services,
which are sequestered in their own individual VMs.
Deploying new services on existing servers also speeds

the development and testing of new services, in a realistic,
closer-to-production environment without impacting
existing services and without requiring installation of new
hardware.

Virtual Enclaves

Within large and complex enterprises, there is a need to
separate mission-critical environments from the rest of the
organization. Critical areas like manufacturing should be
immune to worms and malware that might proliferate in
the rest of the organization, and access to these critical
areas needs to be restricted to those individuals who need
it. Fundamentally, these critical areas require their own
separate enclave. The traditional approach to building
these enclaves is to use dedicated hardware, as shown in
Figure 2. This approach has several drawbacks. Deploying
the entire infrastructure needed to make the enclaves self-
sustaining (such as DNS servers) is time-consuming and
expensive. If the infrastructure in one of the enclaves goes
down, there is no easy way of getting more resources,
short of either repairing the down nodes or installing new
equipment.

Figure 2: Enclaves currently need to be implemented
with physical partitioning and hardware firewalls

The use of DVMs combined with overlay routing
technology provides an innovative new way of deploying
these enclaves. The VMs required by each service can be
joined together with a secure overlay. The overlay isolates
and controls access to the VMs as shown in Figures 2 and
3.

Intel Technology Journal, Volume 10, Issue 3, 2006

Virtualization in the Enterprise 235

Figure 3: A secure overlay network connects
distributed virtual machines

This approach has several benefits. If there is sufficient
capacity, no new machines need be deployed. These new
virtual enclaves can be deployed in a dynamic manner at a
greatly reduced cost. If network segments go down,
overlays can route around the problems. If hosts go down,
VMs can be moved or allocated on other physical hosts.

Extending Virtualization into Clients

The computational, network, and storage resources of
mobile devices (laptops and handheld devices) in an
enterprise typically have low utilization and are not
available for use by enterprise applications or services that
could best utilize them. We envision an environment
where the OS with which a mobile user interacts, is one of
many OSs that run over VMMs. While the mobile user is
interacting with the device, a VM dispatch service can
request that the device’s VMM create VMs for a variety
of tasks, as displayed in Figure 4. These tasks can range
from doing computations to running services like file
systems, content distribution, and other services like
Voice over IP (VoIP). This work can be transparent to the
end user and done in the background.

Figure 4: Dispatching DVMs to mobile devices

This architecture extending virtualization into clients and
dispatching work via VMs to mobile devices has
significant advantages over the current situation in most
enterprises. Enterprises typically have low utilization of
their mobile resources. Our proposed architecture enables
better utilization and can potentially add enormous
amounts of shared resources to an enterprise. It also has
advantages when it comes to management of systems and
services. Having a VMM underneath the OS visible to a
user makes it easier to restart or rebuild the users’ OS.
Services can take advantage of the location of mobile
devices and dispatch service instances in VMs that are
close to their designated clients. This frees a service from
having to manage network parameters such as delay and
throughput to a central site. The service is also easier to
maintain in the face of node outages because work can be
moved between mobile devices.

The similarities between overlay networks and ad hoc
networks, along with the technical merits that each
introduce through their integration, motivated our interest
to investigate and implement an alternative architecture of
overlays on wireless mesh networks, called OverMesh
[16]. Integrating overlays and wireless mesh enables
OverMesh to be flexible enough to serve many
networking purposes.

While OverMesh is similar to current ad hoc, sensor
networking, and peer to peer computing systems, it is also
architecturally distinct from these systems. These are the
differentiating properties of OverMesh:

• Infrastructure-free: a peer-to-peer edge/access system
is suggested over current hierarchical physical
formations.

Intel Technology Journal, Volume 10, Issue 3, 2006

Virtualization in the Enterprise 236

• Network virtualization: based principally on a
distributed virtual machine overlay strategy.

• Emergent control and manageability: utilize learning
and statistical inference techniques to off-load
human-dependency on operational management and
provisioning.

• Cooperative and adaptive end-to-end control: tighter
layer integration and automation of application-to-
network control and management through cross-layer
facilities.

OverMesh can be applied to a variety of wireless mesh
networks. At its current stage, we chose to realize it on
one of the mesh networks that is being actively
standardized—the IEEE 802.11s WLAN mesh network
[17]. The PlanetLab service architecture [18] was
customized and integrated with the WLAN mesh network

to manage the DMV-based overlays. We believe that the
implemented OverMesh platform will provide a unique
testbed for developing a wide variety of services and
applications on wireless mesh networks.

An IT Overlay

To experiment with, test, and deploy services using
DVMs, Intel’s IT department has created the IT Overlay.
We envision it as an overlay network that will include
hosts within Intel and eventually extend to hosts residing
outside of Intel’s firewalled perimeter, as shown in Figure
5. Systems hosting VMs have been deployed at five sites
within Intel, with more to be added as use of the IT
Overlay increases. Intel is also part of the PlanetLab
consortium, and Intel IT hosts two PlanetLab sites. Intel
has deployed a monitoring service that takes advantage of
the distributed nature of PlanetLab.

Figure 5: The IT Overlay inside and outside of Intel’s firewalls

The internal portion of the IT Overlay will be modeled
after PlanetLab. Services will be able to make requests to
a central authority that will dispatch VMs to run
applications and experiments. We intend to use the
interfaces and APIs created by PlanetLab to dispatch
VMs, although the Overlay uses Xen* [5] domains for
VMs rather than the VServers [19] implementation. We
envision running security, network monitoring, and
content distribution applications on the IT Overlay and

opening it up as a testbed and deployment vehicle for
DVM-enabled services.

A CASE STUDY OF SERVER
VIRTUALIZATION USING VMWARE
Here is a brief history leading up to the discussion and
decision to implement server virtualization for a
manufacturing support group at Intel. This organization’s
server population grew 65% over the last three years with

Intel Technology Journal, Volume 10, Issue 3, 2006

Virtualization in the Enterprise 237

2006 projections meeting or exceeding this trend. As this
organization grew and acquired servers, many of these
acquisitions were waterfalled servers being released by
other Intel business units. The initial costs made this type
of acquisition financially attractive but as we move
forward four years, most of these servers have reached
their end of life. Another factor is that the primary
datacenter for this group is projected to reach complete
build out in 12-18 months with no plans to expand. The
challenge for the organization was to continue supporting
the server growth and replace aging hardware with limited
datacenter space while maintaining the same high level of
customer support.

This group partnered with a forward-thinking IT group to
evaluate, plan, and implement a virtual server
environment. In this case study, we walk you through the
steps, lessons, hurdles, and successes of this effort. The
covered topics include software evaluation, candidate
evaluation, hardware design, host hardware setup, virtual
server setup, server testing procedures, and initial results.

There are multiple factors to consider when evaluating
and selecting server virtualization software. Our team
carefully reviewed leading technology products and
evaluated different system design options. The two most
popular virtualization architectures were host-based
virtualization (Microsoft Virtual Server 2005*; VMware
GSX 3.1*; Microsoft Virtual PC 2004*; VMware
Workstation 5.0*) and full virtualization (VMware ESX
2.5*).

Host-based virtualization requires the installation of a
base OS first and then a VMM to be responsible for the
execution of all VMs. In addition to the VMM
application, the OS can execute other applications (e.g.,
Anti-Virus, Backup). The downsides to this type of
architecture are a heavy performance penalty, high system
resources utilization by host system management,
additional work to support host maintenance and
management, and the upkeep of host security.

The full virtualization design starts off with the
installation of a mini kernel (a hypervisor optimized for
virtualization) on the physical server. This kernel uses
minimal system resources since it focuses only on tasks
required for virtualization, and it does not run unnecessary
processes or applications. The hypervisor provides full
hardware virtualization and distributes the necessary
system resources to all VMs. Each VM contains its own
OS and cannot distinguish it is running on virtualized
hardware. This architecture is ideal for consolidating high-
end datacenter solutions.

The decision process to determine the proper
virtualization architecture is a critical and time-consuming
task. Our team researched benchmarking results of

multiple virtualization products and analyzed the cost and
supportability options. We prioritized our list of
requirements and rated the various software options. We
evaluated four products against our requirements and
scored their performance. Our requirements included
performance, manageability, supportability, stability,
security, and a wide range of capabilities. Table 1 is an
example of how we did our comparison: (utilizing
fictitious data).

Table 1: Product evaluation scorecard example

After evaluating the scores, we selected a full
virtualization software solution for our virtual server
environment.

When virtualizing a datacenter, the project’s success is
directly dependent on choosing the appropriate
candidates. We approached this step by defining our
virtualization strategy for this business unit. First, we
divided their server environment into four categories:

• Ideal candidates

• Candidates

• Potential candidates

• Not a candidate

To categorize each server, we started by collecting data on
performance, system utilization, end-of-service timelines,
business area, and application specifics. Once the
selection criteria data were collected, we mapped our
servers against the selection criteria to determine in which
virtualization category a server belonged. Once
categorized, our team focused on 75 candidates and
worked with the business unit to evaluate application
specifics and machine load analysis. With our
performance evaluations and customer input, we
assembled the server requirements:

• CPU consumption

• Required memory

• Disk I/O intensity

Intel Technology Journal, Volume 10, Issue 3, 2006

Virtualization in the Enterprise 238

• Network requirements

• OS configuration

We used these data when evaluating different hardware
platforms for our virtualization environment.

To maximize Return on Investment (ROI), number of
virtual systems, and performance, this team’s final choice
for the virtual host servers was the 4-way Dual-Core Intel®
Xeon® processor 7040Φ 3.0 GHz-2 MB L2 cache system
with 16 G of RAM, 2 x 2 Gb, 64-bit/133 MHz PCI-X-to-
Fiber Channel Host Bus Adapters and three Network
Dual-Port PCI-X 1000T Gigabit Server Adapters.

The hardware selected for this virtual environment is
based on an Intel IT standardized platform. The team
focused on designing a robust virtual infrastructure
without introducing single points of failure. This design
would address our customer’s primary concern with
consolidation of multiple applications to a single physical
machine.

The team agreed on an environment that would be
immune to hardware failure and power interruptions while
possessing the ability to load-balance. The consolidated
applications would reside on host servers containing dual
power supplies, mirrored hard drives, and teamed network
interface cards. The centralized storage solution selected
is a multi-terabyte storage area network (SAN) with full
fault-tolerant capabilities. Connections to the host servers
were made possible through two 2 Gb fiber channel
switches configured with redundant paths. This design
enables load-balancing, as all VM files reside in a central
location and access is possible by each host. Figure 6
shows the details of this design.

SAN

Switch 2

Switch 1

Virtual
 Host 1 Backup

Network
100MB

Public
Network

1GB VMotion

Redundant
Fiber Channel

Network

Virtual
 Host 2

Virtual
 Host 3

Virtual
 Host 4

Virtual Environment Layout

Figure 6: Layout of virtual environment detailing the
built-in redundancy

Utilizing an available software feature, VMs can be
migrated to another physical host. This migration is done
in an active state and causes no server downtime while
applications continue to operate uninterrupted. End users
are unaware of such migrations. We use this tool to aid in
managing downtimes, load-balancing, and other resource
alignment needs.

After reviewing multiple virtualization case studies, the
team agreed on a 20:1 consolidation ratio limit of VMs to
a single physical system. Our initial design consists of 4
physical machines with 15 virtual guests configured on
each. This will incorporate 60 ideal candidates targeted
for consolidation while reserving resources for potential
migrations. In case of physical server failure, the VMs on
the failed host would migrate to the 3 remaining hosts as
seen in Figure 7. This will permit 5 additional VMs to
migrate to each host, respectively, maintaining the 20:1
consolidation and 100% availability.

Intel Technology Journal, Volume 10, Issue 3, 2006

Virtualization in the Enterprise 239

Figure 7: Demonstration of failover when a host
system fails

It was easy to justify this project because we were up
against several looming obstacles. First, the hardware in
use was aged and being purged from our current
supportability model. Replacement of this hardware on a
one-for-one basis was very costly. Second, the datacenter
is constrained by space and power. We needed a solution
that would free up physical space in the computing
environment. By replacing out-dated servers with virtual
servers, we not only saved ~40% on hardware upgrade
costs but more importantly extended the capacity of our
datacenter. This basic ROI did not investigate costs
associated with power, network, AC, etc. Figure 8 shows
our first-year ROI.

Figure 8: Our first-year ROI calculation (software
costs are approximations)

As the approval, purchasing, and installation of the actual
virtualization island was in process, the team utilized a
validation environment to begin building server
configurations and testing potential candidate servers. To

do this, we established an overall test, validation, and
implementation plan for our “Ideal Candidate” servers.
We notified the owners of these machines of the timeline
for testing and identified our criteria for a successful test.

The technical team defined and created a “gold build”
server definition (based on the data collected during
server classification).

As the testing timeline progressed, server owners were
notified three weeks prior to their servers being created.
This notification included a detailed timeline for the next
five weeks and the requirements for completing a
virtualization test. Two weeks before testing began, the
server owners met with the virtualization team to discuss
special requests, variations from the gold build
configuration, and to approve VM resource allocation.
After this meeting, the technical team provisioned the new
servers and kept them in a “power off” status. The server
owners then had to prepare their test plan, success criteria,
and migration strategy during these two weeks. The test
plan had to include a regression test for any application
installed on the server to ensure it executed properly,
along with the server functions. Two days prior to the start
of virtual server testing, test plans, success criteria, and
migration plans were reviewed and approved. Once all
requirements were met, the servers were released to the
testing team to build their applications, copy data, and
configure the server with all required software and
application information. The test team did all OS and
application testing in a two-week period and met with the
virtualization team at the end of the two weeks. When all
success criteria had been met, the server was shut down.
Once the final hardware landed in the datacenter, the
server configurations were moved to the production
hardware, restarted, and each test group did a quick
validation to ensure the server was in the state it was shut
down in.

That was when the virtualization team turned over the
“keys” to the server owner and the owners executed their
migration plan and moved the physical machine contents
to the VM. When the final migration was complete, the
physical machines were powered off and removed from
the datacenter within 30 days.

RESULTS
When this Intel® business group set out to upgrade its
computing environment, the expected results were to have
an equal environment to the existing one. After the server
virtualization was completed, the expected ROI was
realized along with additional benefits such as datacenter
floor space, power, cooling, and network relief as well as
easier manageability for the IT support team. This
installation also built a solid production platform to begin

Intel Technology Journal, Volume 10, Issue 3, 2006

Virtualization in the Enterprise 240

deploying enterprise services and monitoring capabilities
through provisioning of virtual servers for these purposes.

CONCLUSION
In this paper, we explored the issues of implementing
virtualization in the enterprise. We analyzed IT services
and looked at how those services would be impacted in a
virtualized environment.

We looked at several use cases being currently
investigated by Intel’s IT department. The DVM concept
provides a new way of looking at deploying services, and
it enables a further use case that we are exploring with our
OverMesh implementation and the IT Overlay.

We presented a case study of virtualization of a datacenter
in which the VMware ESX Server was used that allowed
us to consolidate 20 or even more servers onto a single
physical server reducing hardware, electrical, cooling, and
administrative costs. Our solution provides robust
resource controls for different types of applications, and
we can control the levels and limits of CPU, networking,
memory, and disk I/O allocated to and used by each
virtual system.

Utilizing the virtual environment, IT can quickly create
new servers; and virtual servers can be deployed in 30
minutes vs. 60 days to purchase and deploy a physical
server. We achieved our goals to minimize our physical
footprint in the datacenter, lower our administrative costs,
improve our network uptime, and deploy new servers and
applications faster. According to Thomas Bittman,
research vice president and distinguished analyst at
Gartner Inc., “integration of virtualization technology with
the operating system is a natural evolutionary step for the
x86 platform.”

ACKNOWLEDGMENTS
We acknowledge our reviewers Dev Pillai, Mani
Janakiram, Greg Priem, Joe Whittle, Nicolas Robins,
Vivekananthan Sanjeepan, Robert Adams, George
Clement, Raju Nallapa. We also acknowledge the work of
Rita Wouhaybi, Gang Ding, Winson Chan, Hong Li,
Manish Dave, Claris Castillo, and Stacy Purcell in
investigating enterprise uses of Distributed Virtual
Machine Technology.

REFERENCES
[1] Goldberg, R., “Survey of virtual machine research,”

IEEE Computer Magazine, 7:34–45, June 1974.

[2] L. Peterson, T. Anderson, D. Culler, and T. Roscoe,
“A Blueprint for Introducing Disruptive Technology
into the Internet,” in Proceedings of HotNets I,
Princeton, NJ, October 2002.

[3] http://www.geni.org*

[4] Waldspurger, C. “Memory Resource management in
VMware ESX Server,” in Proceedings of the
Symposium on Operating Systems Design and
Implementation (OSDI ’02), December 2002.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Hegebar, I. Pratt, A. Warfield, “Xen and the
Art of Virtualization,” in Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP).
October 2003.

[6] Lai, K., Huberman, B., and Fine, L., “Tycoon: A
Distributed Market-based Resource Allocation
System,” in CoRR: Distributed, Parallel, and Cluster
Computing, 2004.

[7] P. Rundberg and Fredrik Warg, “Freebench v1.03,” at
http://www.freebench.org/*

[8] Clark, B., T. Deshane, E. Dow, S. Evanchik, M.
Finlayson, J. Herne, and J. Matthews, “Xen and the
Art of Repeated Research,” in Proceedings of the
USENIX Annual Technical Conference, Boston, July
2004.

[9] JSDL Version 1.0 recommendation, at
http://www.ggf.org/documents/GFD.56.pdf*

[10] J. Dilley, et al., “Globally Distributed Content
Delivery,” in IEEE Internet Computing,
September/October 2002, pp. 50–58.

[11] Tristan Richardson, Quentin Stafford-Fraser,
Kenneth R. Wood, and Andy Hopper, “Virtual
Network Computing,” IEEE Internet Computing,
Vol.2 No.1, Jan/Feb 1998, pp. 33–38.

[12] N. Spring, D. Wetherall, T. Anderson, “Scriptroute:
A Public Internet Measurement Facility,” USENIX
Symposium on Internet Technologies and Systems,
2003.

[13] Cindy Bickerstaff, Ken True, Charles Smothers,
Tod Oace, Jeff Sedayao, and Clinton Wong, “Don’t
Just Talk About the Weather–Manage It! A System for
Measuring, Monitoring, and Managing Internet
Performance and Connectivity,” in First Conference
on Network Administration (NETA ‘99), Santa Clara,
1999.

[14] Cisco Corporation. Netflow, at
http://www.cisco.com/warp/public/732/Tech/nmp/netfl
ow/index.shtml*

[15] Keynote. http://www.keynote.com/*

[16] J. Vicente, S. Rungta, G. Ding, D. Krishnaswamy,
W. Chan, and K. Miao, “OverMesh: Network Centric
Computing,” under submission to IEEE

http://www.geni.org
http://www.freebench.org/
http://www.ggf.org/documents/GFD.56.pdf
http://www.cisco.com/warp/public/732/Tech/nmp/netflow/index.shtml
http://www.keynote.com/

Intel Technology Journal, Volume 10, Issue 3, 2006

Virtualization in the Enterprise 241

Communications Magazine, Emerging Technologies
Series, 2006.

[17] IEEE 802.11s ESS Mesh Network working group
at http://grouper.ieee.org/groups/802/11*

[18] Andy Bavier, Mic Bowman, Brent Chun, Scott
Karlin, Steve Muir, Larry Petersen, Timothy Roscoe,
Tammo Spalink, Make Wawrzoniak, “Operation
System Support for Planetary-Scale Network Service,”
in Proceedings of NSDI ’04: First Symposium on
Networked Systems Design and Implementation, San
Francisco, March 2004.

[19] Linux VServers at http://www.linux-VServer.org*

AUTHORS’ BIOGRAPHIES
Patrick W. Fabian is the business operations manager for
Intel’s Enabling Technologies and Solutions group in the
Technology Manufacturing Engineering organization. He
works closely with IT to support his organization’s
infrastructure and server environment. Patrick holds a B.S.
degree in Industrial Management and Computer Science
from California University of Pennsylvania. He has over
25 years of IT experience, joining Intel in 1996 as an SAP
developer. Along with developing key enterprise
applications, his career at Intel includes managing SAP,
Web, Teradata ETL, Microstrategy development teams
and the infrastructure team responsible for Intel’s
enterprise data warehouse. His e-mail is patrick.fabian at
Intel.com.

Julia Palmer is a senior systems engineer with
Information Technology. She joined Intel in 1997 as an
Automation Engineer for Fab 18 in Israel. Currently, Julia
is leading multiple infrastructure projects for Storage,
UNIX*, and Virtualization in the Manufacturing
Computing organization. She holds an M.S. degree in
Computer Science from Belarusian State University of
Informatics and Radioelectronics. Her e-mail is
julia.palmer at intel.com.

Justin B. Richardson is a Microsoft Certified Systems
Engineer currently working for IT Manufacturing
Computing Global Solutions. He joined Intel in 1996 and
has used his expertise of server infrastructure and mass-
storage solutions to support several manufacturing
environments. His current virtualization projects are
enabling server consolidation in a large-scale datacenter.
His e-mail is justin.b.richardson at intel.com.

Mic Bowman is a principal engineer within Intel’s
System Technology Laboratory and principal investigator
for the Distributed Virtual Machines Strategic Research
Project. Bowman received his B.S. degree from the
University of Montana, and his M.S. and Ph.D degrees in
Computer Science from the University of Arizona. He

joined Intel’s Personal Information Management group in
1999. While at Intel, he developed personal information
retrieval applications, context-based communication
systems, and middleware services for mobile applications.
Prior to joining Intel he worked at Transarc Corp. where
he led research teams that developed distributed search
services for the Web, distributed file systems, and naming
systems. His e-mail is mic.bowman at intel.com.

Paul Brett joined Intel UK in 2000 as part of Intel´s
Online Services group. He is currently working in
Hillsboro, Oregon, focusing on Distributed Systems
Management tools for developing, deploying and
accessing planetary-scale services. From 1988 to 2000,
Brett worked on the design and implementation of
dependable systems for air traffic control. He is a graduate
of the UK’s Open University, where he earned a First
Class Honours degree in Systems Engineering of
software-based systems. His e-mail is paul.brett at
intel.com.

Rob Knauerhase is a staff research engineer with Intel
Labs. His professional interests include machine
virtualization, Internet technologies, distributed systems,
system software, and information privacy in the digital
world. Knauerhase received an M.S. degree in Computer
Science from the University of Illinois at Urbana-
Champaign, and a B.S. degree in Engineering from Case
Western Reserve University. He holds 14 issued patents,
with more than 60 patents pending. He is a senior member
of the IEEE and the IEEE Computer Society. His e-mail is
knauer at jf.intel.com.

Jeff Sedayao is a staff research engineer in Intel’s IT
Research Group. He focuses on IT uses of virtualization,
including applying PlanetLab and PlanetLab developed
technologies to enterprise IT problems. Jeff has
participated in IETF working groups, published papers on
policy, network measurement, network and system
administration, and authored the O’Reilly and Associates
book, Cisco IOS Access Lists. His e-mail is jeff.sedayao at
intel.com.

John Vicente, a senior principal engineer, is the director
of Information Technology Research and chair of the IT
Research Committee. John joined Intel in 1993 and has 22
years of experience spanning R&D, architecture, and
engineering in the field of networking and distributed
systems. John has co-authored numerous publications in
the field of networking and has patent applications filed in
internetworking and software systems. He is currently a
Ph.D. candidate at Columbia University’s COMET Group
in New York City. John received his M.S.E.E. degree
from the University of Southern California, Los Angeles,
CA in 1991 and his B.S.E.E. degree from Northeastern
University, Boston, MA in 1986. His e-mail is
john.vicente at intel.com.

http://grouper.ieee.org/groups/802/11
http://www.linux-VServer.org

Intel Technology Journal, Volume 10, Issue 3, 2006

Virtualization in the Enterprise 242

Cheng-Chee Koh is a senior systems engineer in Intel’s
Engineering Computing Group at Santa Clara, California.
She received her B.A. degree in Mathematics and her
M.S. degree in Computer Science from Indiana
University, Bloomington. Her current interests include
messaging, interactive computing, information security,
and virtualization. Cheng-Chee has been with Intel for 13
years. Her e-mail address is cheng-chee.koh at intel.com.

Sanjay Rungta is a principal engineer with Intel’s
Information Services and Technology group. He received
his B.S.E.E. degree from Western New England College
and his M.S. degree from Purdue University in 1991 and
1993, respectively. He is the lead architect and designer
for the Local Area Network for Intel. He has over 13 years
of network engineering experience with three years of
experience in Internet Web hosting. He holds one United
States patent and three pending in the area of Network
Engineering. His e-mail is sanjay.rungta at intel.com.

Δ Intel® Virtualization Technology requires a computer
system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and, for some uses, certain
platform software enabled for it. Functionality,
performance or other benefits will vary depending on
hardware and software configurations and may require a
BIOS update. Software applications may not be
compatible with all operating systems. Please check with
your application vendor.
Φ Intel® processor numbers are not a measure of
performance. Processor numbers differentiate features
within each processor family, not across different
processor families. See
www.intel.com/products/processor_number for details.

Copyright © Intel Corporation 2006. All rights reserved.
Intel and Xeon are registered trademarks of Intel
Corporation or its subsidiaries in the United States and
other countries.

* Other names and brands may be claimed as the property
of others.

This document contains information on products in the
design phase of development. The information here is
subject to change without notice. Do not finalize a design
with this information. Contact your local Intel sales office
or your distributor to obtain the latest specifications and
before placing your product order.

INFORMATION IN THIS DOCUMENT IS PROVIDED
IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS

DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

Intel may make changes to specifications and product
descriptions at any time, without notice.

This publication was downloaded from
http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

http://www.intel.com/products/processor_number
http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Copyright © 2006 Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information visit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm
http://www.intel.com/sites/corporate/tradmarx.htm

