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ABSTRACT 

We present how an enterprise IT organization sees 
virtualization in the enterprise and how it can be applied. 
We look at key enterprise services and applications used 
within Intel’s IT department and examine the issues 
associated with virtualizing servers within the context of 
those services. We demonstrate that virtual machine (VM) 
isolation does not extend to performance isolation as we 
show how applications running in separate VMs can 
significantly interfere with each other. Enterprise services 
depend on host characteristics like available cycles, 
platform configurations, and on proximity to other 
services. We define a taxonomy of these dependencies 
derived from our study. Next, we describe uses of Intel® 
Virtualization TechnologyΔ (Intel® VT) that we are 
investigating. The ability to run multiple operating 
systems (OSs) is of great interest in our design 
environment where highly specialized tools are tied 
closely to OS versions. The ability to checkpoint, suspend, 
resume, and migrate VMs is very useful when we run long 
simulations. The ability to allocate VMs at the location of 
choice opens up other possible use cases, such as network 
monitoring, security monitoring, and content distribution. 
We see this capability also enabling safe yet realistic 
experimentation, as a way to extend virtualization into 
clients. Finally, we present a real case study applying 
virtualization to enterprise IT problems. This 
virtualization program achieved higher server utilization, 
made it easier to manage datacenter assets, and reduced 
the consumption of datacenter resources (floor space, 
power, etc.), as well as simplified server releases through 
standardization.  

INTRODUCTION 
Virtualization is touted as a new and upcoming trend in 
computing. Simply stated, virtualization is a technology to 
run multiple independent virtual operating systems (OSs) 
on a single physical computer. It is not a particularly new 
idea in the enterprise, having been implemented in the 
1960s on IBM mainframes [1].  

A number of characteristics of virtualization make it a 
much discussed topic of conversation today. One is the 
potential to better use compute resources, allowing an 
enterprise to maximize its investment in hardware. In an 
average datacenter, the majority of the infrastructure 
resources are used about 25% of the time. Virtualizing a 
large deployment of older systems on fewer highly 
scalable, highly reliable, modern, enterprise-class servers 
significantly reduces hardware costs for infrastructure 
services. Multiple hardware and software solutions are 
available on the market and ready to provide a secure, 
easily managed platform to deploy, manage, and remotely 
control VMs. 

Virtualization offers so much more than just server 
consolidation. Intel’s IT organization has been studying 
other uses of virtualization that can add tremendous value 
to an enterprise. Virtualization features such as the ability 
to suspend, resume, checkpoint, and migrate running VMs 
is extremely useful in dealing with long running jobs. If a 
VM with a long running job checkpoints its state and then 
the physical machine it is on fails for some reason, the job 
can be restarted from where it left off, along with the VM, 
rather than being restarted from the beginning.  
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A key difference of virtualization today and the 
mainframe age is the ability to allocate a VM at the 
location of a service’s choice. This notion of Distributed 
Virtual Machines (DVMs) opens a whole host of possible 
uses, such as network monitoring, security policy 
validation, and content distribution. It enables enterprises 
to create such things as virtual secure enclaves and do safe 
yet realistic testing of large scale, even planetary scale, 
services. This idea is useful and compelling enough to 
power the PlanetLab testbed [2], which is slated to 
become a core part of a next-generation Internet project 
called GENI [3]. 

Virtualization, while a viable technology today, is not 
without issues. Allocating VMs for enterprise services is 
not as simple as finding the first available host. Services 
have dependencies on network topology and other 
services. Also, VMs, while offering many types of 
isolation, do not offer complete performance isolation. 
VMs can interfere with each other. 

This paper examines the virtualization of physical host 
machines, enterprise services, and multi-site instantiation 
of virtual environments. First, we introduce the difficulty 
of virtualizing enterprise service host machines. Second, 
we discuss use cases that can give IT organizations many 
new options in supporting their company’s business units. 
Third, we review a case study of server virtualization for a 
business group at Intel and the process they followed from 
project inception through implementation. We conclude 
the paper with a discussion of our results and a description 
of future work. 

CHALLENGES OF VIRTUALIZATION IN 
THE ENTERPRISE 
For batch-oriented tasks, provisioning VMs and getting 
predictable performance appears to be relatively 
straightforward. This seemly simple task can be difficult if 
VMs interfere significantly with each other. When we 
introduce virtualization with enterprise services like the 
Domain Name System (DNS) [4], VM provisioning 
becomes more complex, especially as the location of the 
physical machine hosting the VM becomes important. In 
this section, we describe the challenges of server 
virtualization in an enterprise context.  

Studying the Issues of Virtualization in the 
Enterprise 
Our approach to studying the issues of virtualization in the 
enterprise had two parts. First, we looked at how VMs 
running on the same physical host could affect each other, 
particularly when different applications were running on 
the VMs. Second, we looked at key enterprise services 

and investigated how these services would fare in a virtual 
environment. 

This is how we studied virtual machine interference:  

• We obtained baseline performance (a control) of an 
application running on one VM. 

• We attempted to optimally degrade the performance 
of one of two VMs running on the host, typically by 
attempting to use some shared resource. 

• We documented and analyzed the results. 

Once we had studied how individual VMs interact on one 
physical host, we looked at how VMs would interact in an 
enterprise. We first looked at the services that are the most 
critical and generate the most volume on the Intel Wide 
Area Network (WAN). Our goal was to examine those 
applications for performance bottlenecks and platform 
dependencies that would be problematic when servers for 
those applications and services would be virtualized. In 
addition, we also looked for five additional applications 
commonly used within Intel. For all of these services and 
applications, we searched for information on the Web and 
talked to IT personnel who are expert at running them in 
Intel’s IT environment, looking for the issues mentioned 
previously.  

VM Interference 
VMs, as a technology, offer many advantages to users and 
administrators. Security isolation prevents a malicious 
application from accessing data or altering running code. 
Fault isolation prevents one misbehaving application from 
bringing down the whole system—rather than rebooting 
the box, one can simply reboot the VM. Environment 
isolation allows multiple OSs to run on the same machine, 
accommodating legacy applications and cutting-edge 
software alike.  

While VMs offer these forms of isolation, we have 
observed that modern VM environments [4, 5] do not 
really provide performance isolation. While in theory, the 
virtual machine manager (VMM, also known as the 
hypervisor) “slices” resources and allocates shares to 
different VMs, there are still ways in which the behavior 
of one VM can adversely affect the performance of 
another. Furthermore, the isolation that VMs provide 
limits visibility of an application in a VM into the cause(s) 
of performance anomalies that occur in a virtualized 
environment. Contemporary platforms with Intel VT, 
however, provide mechanisms that we can use to detect 
and classify performance interference, which can then be 
used for a number of purposes: 

• As input to the local scheduler, which can alter its 
behavior (e.g., change quanta or ordering) to 
ameliorate the effects of the interference. 
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• As input to a global scheduler, or orchestration 
engine, which uses the information to rearrange the 
placement of VMs to minimize interference and 
improve performance. 

• As “metering” data, so that systems that charge for 
usage (e.g., free-market allocation systems such as 
HP Labs’ Tycoon* [6], grid computing pay-per-cycle 
or “cycle-rental” schemes, etc.) can more accurately 
charge/credit users for the resources they 
consume/provide. 

Our research to date has shown that shared state in 
resources under contention can indeed dramatically affect 
the performance of a VM, beyond the expected 
performance degradation that is due to simple time-slicing 
of the resource.  

The first type of interference we studied was the 
interference within the processor’s L2 cache and to server 
state (disk head position, cache state, etc.). We designed 
experiments to quantify these types of interference by 
running “benchmark” workloads against other VMs with 
code designed to be explicitly pessimistic in terms of 
interference to that particular benchmark. Our results 
show that in each case, there can be a non-negligible 
effect on the benchmark’s performance. 

For the cache experiment, we wrote code to continuously 
write to a large (bigger than the L2 cache) array in one 
VM to show how this would interfere with a memory-
intensive application in another VM. We looked at the 
Freebench test suite [7] because it was freely available and 
had been used in other VMM performance testing [8]. We 
selected Freebench’s analyzer benchmark as an 
application. The analyzer’s performance is limited by the 
memory subsystem, making it a good candidate for cache 
interference. It runs a deterministic computation, so we 
used time-to-completion as our measurement of 
performance.  

Our experiments compared the runtime of the program 
versus another VM executing a simple spinloop. Because 
of this, the slowdown seen can be attributed directly to 
cache interference (i.e., its degradation is due to more than 
simply sharing half the CPU with another VM). We ran 
our experiment on several types of Intel® platforms, with 
varying configurations. A typical run is shown in Figure 1. 
As the amount of cache used by our interference-
generating application increases, the slowdown in 
application performance increases. That a dirty cache 
slows down an application’s execution is not surprising; 
however, the application and its OS are completely 
unaware that the cache is being dirtied, and because they 
are running on a VM, typical techniques (e.g., OS task 
scheduling) are unavailable. With Intel VT features, we 
are able to determine the interference and provide that 

information to higher-level constructs (e.g., the hypervisor 
scheduler, or a global orchestration system) as mentioned 
above. 

Figure 1: Performance degradation as cache is 
increasingly dirtied 

We also ran tests for storage interference. The simplest 
example entailed two VMs accessing the same disk 
device, to most easily demonstrate head-position and disk-
cache state (outside the VM). Our results (as in the CPU 
cache case that we compared against a simple spinloop 
VM) showed similar amounts of additional degradation—
between 50% and 90% depending on the nature of the 
disk access (sequential/random and character/block). 

Virtualization and Service Dependencies 
To get the list of critical network services, we consulted 
with Intel IT’s WAN engineers. They reported the 
following are the five most critical network services: 

• Exchange* 

• DNS 

• Active Directory* 

• Chip design associated file transfers 

• Web proxy traffic 

In addition, we studied the following internal applications: 

• Internet Information Server (IIS*) 

• Apache Web server* 

• SQL server* 

• Oracle 

• Sendmail* 

We looked at a number of service orchestrators also. We 
looked at how Oracle orchestrates its operations, as well 
as the IBM/Auremia director*, the HP Workload 
Manager*, the 3-DNS* and Big IP* load balancers from 
F5, and Microsoft’s Visual Studio 2005*. To do this, we 
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looked at documentation as well as talked to operational 
experts within Intel’s IT organization. In addition, we 
found that some services and applications like DNS, 
Sendmail, and Active Directory, have some mechanisms 
that perform orchestration functions. 

We found that service platform dependencies fall into the 
following categories: 

• Network 

• Host/System 

• Storage 

• Services 

We next discuss these dependencies and emphasize the 
aspects that are typically not covered by service 
orchestrators. At the end of each section, we describe 
constraints that need to be specified by orchestrators to 
deal with these dependencies, since these would be 
additional concerns with provisioning VMs for those 
services. 

Network 

We found that services had a number of network 
dependencies that are not typically dealt with by service 
orchestrators. Often these dependencies rely on network 
topology specifics. One example is the Web proxy service 
offered by Intel IT. This service proxies Web traffic 
between systems on the internal Intel network and the 
Internet and reduces network traffic by caching Web 
pages already fetched. The proxy service maintainers 
require that a directly connected proxy (with direct access 
to the Internet) has a high bandwidth network path to the 
Internet. For fairly large Intel sites with low bandwidth 
links to the Intel® WAN, Intel® IT deploys a proxy server 
locally and chains this proxy server to another. While 
some orchestration specification languages like JSDL [9] 
allow conditions to be set on network bandwidth, they do 
not address network topology. 

Intel’s DNS service relies on multiple network 
connections from a site for deployment. Intel sites with 
only one connection to the Intel® internal WAN have DNS 
servers deployed to them. Multiple and reliable network 
connectivity is a dependency for the DNS service.  

DNS also monitors query latencies and uses them to 
generate basic orchestration functionality. It records the 
time it takes to process queries for a domain and uses the 
name servers for that domain that respond the fastest. In 
this case, network latency is a significant contributor to 
how the DNS service behaves and partitions work. 

Some services want to see a specific number of network 
interfaces on the platform. Some deployments of the 
Oracle database system require three network interfaces. 

One of the network interfaces is used for heartbeat 
information between servers and requires low latency. 
Other services assume that they have a network interface 
(or at a minimum, an IP address on an interface) that can 
be directly reached at a particular port. This applies to 
services that use well known ports, such as Web servers 
like Apache or Microsoft IIS. While Web servers can do 
virtual hosting, they assume that a standard HTTP port is 
directly reachable, and in a virtualized environment, this 
implies that there is an IP address per each VM that runs a 
Web server. For each IP address, it is assumed that there 
is a MAC address associated with that interface, and that 
there is a way to route packets to each VM. 

We define network constraints that we need to manage as 
follows: 

• Minimum bandwidth between server hosting service 
and particular points. 

• Topology and availability requirements, in particular 
minimum availability and/or a minimum number of 
paths from a server’s location to other locations. 

• Minimum or a specific number of network interfaces. 

• Maximum latency between server and other servers. 

Host 

We found two notable host dependencies that are not 
covered by orchestration service specifications. The first 
is a dependency on a fixed amount of CPU resources. A 
commonly used mail forwarding program called Sendmail 
depends on the notion of load average to decide whether 
to queue up mail or whether to reject mail connections. In 
a virtual environment where resources are shared equally 
among VMs, an application cannot be certain whether it 
will receive the same amount of CPU resources since 
other VMs may be assigned to the same physical host it 
runs on. Thus, using load average is not an accurate 
indicator of the available resources. 

The second host dependency is non-pageable memory. 
The Exchange mail service relies on having a significant 
amount of memory that cannot be paged out for good 
performance. While orchestrators allow you to specify 
how much memory a job or service may require, there do 
not seem to be options for non-pageable memory. 

Service Affinity/Proximity Requirements 

One key service dependency that is not always captured in 
orchestrators is affinity or proximity to other services. A 
good example is Exchange and Active Directory. 
Exchange requires fast responses from Active Directory. 
Operationally, an Active Directory server should be on the 
same segment as an Exchange server.  Deviations from 
this configuration have proven disastrous operationally. 
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An additional aspect of service dependency is the need for 
a maximum time to complete a service’s basic 
transactions. DNS operations personnel recommend that 
DNS queries must be resolved within one second in order 
to prevent applications that rely on DNS from hanging.   

Storage 

Some applications rely on specific platform features. For 
example, some versions of Oracle require that Oracle 
write directly to disk blocks. Other applications, such as 
Active Directory, require large disk-write caches.    

OTHER USE CASES FOR VIRTUAL 
MACHINES IN THE ENTERPRISE 
Virtualization is typically discussed in the context of 
datacenters, where multiple VMs are loaded onto a single 
host to increase server utilization or reduce the cost of 
buying new hardware. We cover this use case extensively 
in an upcoming section. Virtualization enables other 
capabilities that can be extremely useful to enterprises. 
We now discuss enterprise use cases for virtualization that 
go beyond the usual examples of increased utilization, 
which are being investigated by Intel’s IT organization. 
We start with ways to enhance the operation and 
efficiency of large-scale computation. We then talk about 
distributing virtualization, and how the ability to allocate 
VMS in the location of choice opens up new applications 
and paradigms for service deployment. 

Enhancing Standardization 
While a completely homogeneous computing environment 
would yield obvious efficiencies, it is generally not 
realistic. Intel’s design environment supports a huge 
variety of software tools for a diverse roster of design 
teams, some of whom joined Intel as a result of 
acquisitions. The design environment employs laptop PCs, 
dedicated compute servers, and everything in between. 

In this complex environment, virtualization could achieve 
many of the efficiencies of homogeneity. A software tool 
could be bundled with its own specialized virtual 
computing environment. When a new version of this 
bundle is standardized, it could be quickly pushed out to 
all sites on top of VMMs without requiring expensive and 
time-consuming OS upgrades. This is especially helpful to 
small sites which often lack sufficient staff, and sometimes 
lack even all the required computing platforms, to 
implement a never-ending stream of company-wide 
directives. 

Making it easy and inexpensive to push out new standard 
images to all sites not only reduces costs, but accelerates 
innovation, because it frees a small team to develop 
specialized expertise in a product and to support it 
worldwide instead of relying on generalists dispersed 

across many teams. It enables the leveraging of good ideas 
and fixes from any of these specialized groups, because 
these fixes and ideas can be quickly and easily applied 
everywhere. 

Legacy Operation 
Closely related to the standardization issue is an inevitable 
heterogeneity across time. OSs and microprocessor 
architectures evolve, and they sometimes even die. Yet 
important legacy software tools that depend on particular 
OS versions are often useful far into the future. It is 
expensive and sometimes insecure to maintain special-
purpose “classic” configurations. In addition, tools that 
run on them can’t ride Moore’s Law to ever better 
performance. 

If snapshots of such classic configurations were 
encapsulated as VMs, then they could be inexpensively 
“revived” whenever and wherever needed and on 
enhanced hardware, resulting in the associated tool being 
executed faster. 

This strategy would also be useful for any application that 
is run only occasionally, especially if it needs to or is 
expected to run on a dedicated server. For example, 
during a downtime, whether planned or unplanned, a 
temporary mail forwarding server could be activated at 
some unaffected site. This approach reduces not only 
costs, but also the risk that an infrequently used 
application has fallen behind and is now incompatible 
with changes in the computing environment. Such 
incompatibilities are typically discovered at the worst 
possible time, that is, at the exact moment when the 
application is needed.  

Checkpointing 
A grand reliability goal is to guarantee to users that no job 
will ever fail to complete for external reasons, such as a 
machine reboot, a power outage, a disk crash, or even a 
catastrophic failure such as an earthquake. An important 
enabling technology that would be immediately useful is 
the automatic checkpointing of a VM. 

It should be possible to schedule a periodic saving of the 
VM state that could be used to go back in time and replay 
history from that archived moment, but without the 
externally induced failure. Less frequently, redundant 
copies of the state could be stored away remotely, at a rate 
correlated with the probability of various risks which grow 
with the duration of the task. For example, a simulation of 
the earth’s climate that required a year of calendar time to 
complete would almost certainly be disrupted during that 
year by some external event. It could be argued that the 
more sophisticated the application, the more likely its 
developers are to have already built in checkpointing 
mechanisms. But even if we ignore the fact that many real 
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applications disregard checkpointing altogether, 
application-level checkpointing mechanisms can’t 
reasonably be expected to cope with catastrophic failures. 
Where should the application save its own state to protect 
against fire and flood? 

Checkpointing could obviate the need for engineers to 
submit redundant jobs as insurance. Today, the longer or 
more critical a task, the more likely it is to run multiple 
instances of the same job, causing the actual resource 
utilization for a computing task to be much larger than the 
resource requirements for an individual job might 
indicate. With VMs and checkpointing, a single job would 
only need to be run once because it could be resumed 
elsewhere, even if there were an external failure. 
Likewise, if a machine must be rebooted for OS patches, a 
planned site-wide downtime, or simply as an attempt to 
put it back into a good state, the tasks running on it could 
be terminated easily enough and resumed on some other 
machine. This eliminates the need to prevent long jobs 
from being submitted days in advance of such 
maintenance and the temptation to postpone prudent 
maintenance because of the speed bump it throws into 
user schedules. 

In the long-term, a VM could support some analog of 
apoptosis (programmed cell death), killing itself when it 
detects errors. A daemon could automatically roll back 
(terminate and then reincarnate elsewhere) any VM that 
hasn’t recently enough provided proof that it is healthy. 

An issue that needs to be investigated is how to deal with 
external (non-virtual) state elements, such as the actual 
current calendar time and ongoing network 
communications, that can’t be checkpointed. Another key 
issue concerns licensing. Some software applications 
require a license for physical CPU, while others require a 
license per actively running copy. The issues of program 
state and licensing need to be answered when deploying 
VM checkpointing in the enterprise. 

Performance Isolation 
When choosing a shared computing resource, such as a 
server on which to run a VNC [10] session, it’s difficult to 
predict the impact of contention. The longer the task, the 
greater the chance that some other user may consume an 
unfair share of the resource and degrade one’s own 
effectiveness. Although using VM checkpointing could 
enable the victims to pick up and move to “greener 
pastures,” it would be better to prevent a “tragedy of the 
commons.” If we can ration real-world computing 
resources by configuring the parameters (memory size, 
processor speed, disk access speed, etc.) of each VM 
assigned to a task, then limits on consumption would be 
inherent to the resource capacity of the VM that task is 
running in. A number of VMMs are capable of allocating 

computing resources and of performing a measure of 
performance isolation. While we have shown in a previous 
section that VMs can significantly interfere with each 
other, particularly through the interactions of shared 
resources like the cache, there are other resources like 
CPU cycles and memory that can be allocated in a way 
that significantly isolates the performance effects of tasks 
from each other. 

Distributed Virtual Machines 
The ability to allocate VMs at the location of choice is a 
capability we call Distributed Virtual Machines (DVM). 
DVMs enable a whole host of possible applications and 
servers. Throughout this section, we use the terms 
distributed virtualization, overlays, and distributed virtual 
machines, interchangeably. We view DVM as the 
methodology of choice for realizing robust, 
computationally rich, networked virtualization and for 
implementing overlays.  

The Origins and Impact of DVM 

One of the earliest and most successful implementations 
of DVMs is PlanetLab [2]. PlanetLab is a world-wide 
overlay network with over 689 nodes at 334 locations 
around the world. Designed to be a testbed and 
deployment platform for researchers to study planetary-
scale distributed systems and services, PlanetLab has 
distributed virtualization at its core. Researchers allocate a 
“slice,” a set of VMs, at the locations of their choice. 
Using VMs allows the researchers to develop and deploy 
innovative new services that do not interfere with each 
other on the same physical hosts. Using this model of 
computing, several innovative services with content 
distribution [11] and network measurement [12] were 
developed and deployed. These types of applications, and 
the way that PlanetLab was designed for the safe 
development and deployment of services, have 
implications for the way that DVM can be used by 
enterprises. 

Network Monitoring 

A global organization has many Internet users scattered 
across the planet. Some are Intel customers, some are 
suppliers, and some are employees. Employees can be 
within Intel’s firewalls or working remotely from home or 
from customer sites located anywhere on the globe. 
Services that are utilized include Web sites such as Intel’s 
corporate presence at www.intel.com, various e-commerce 
applications, and VPN connectivity back into Intel. This 
requirement for global access can result in Intel’s Network 
Operation Center (NOC) receiving complaints about 
performance from any spot on the planet to any one of 
Intel’s many DMZ zones. For example, the NOC might 
get a call from a user in China saying that the response for 
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an e-commerce application is very poor. Is the problem 
local to China? Is the problem local to the Internet 
connection in question? Is the problem Internet-wide? The 
NOC needs tools to be able to answer those questions.  

A key question is where to monitor. The typical DMZ 
firewall model lends itself to monitoring the DMZ systems 
from within the DMZ. This ends up creating a monitoring 
model with limited scope that does not address problems 
with transit from anywhere in the world to the DMZ. An 
alternative would be an approach that examined Web logs 
for performance problems [13] or looked at traffic flow 
data using Cisco NetFlow* [14]. Because of our traffic 
volume and the fact that we didn’t have Web servers at all 
of our Internet DMZs, we ruled out this option. It would 
be extremely useful to be able to proactively monitor for 
performance problems all around the world using active 
measurements. Active measurements from regions in the 
world could be taken from commercial services like 
Keynote* [15] or from hosts in datacenters strategically 
placed around the world. Using commercial services 
would limit the kind of applications we could run to 
monitor the DMZs and it could be fairly expensive. 
Deploying our own hosts in the locations around the world 
from where we want to monitor would permit much more 
flexibility, but would be even more expensive. 

DVM presents a relatively inexpensive and flexible 
platform for global-scale monitoring, but poses challenges 
with software distribution and application management.  

Security Monitoring 

The traditional, closed network control model has 
disadvantages in protecting the enterprise networks from 
distributed network attacks because of data inaccuracy, 
inability to perform overall impact analysis, and lack of 
data correlation from distributed sources in large 
networks. As more and more enterprises move towards 
relatively “open” perimeters (sometimes without realizing 
it as through unauthorized wireless access points and VPN 
connectivity) and distributed network environments in 
order to meet business demands, the associated 
provisioning and management cost will consequently 
increase, as will the complexity. The IT infrastructure 
needs to be able to provision security requests quickly and 
be pre-positioned and ready for such requests. The notion 
of trusted and un-trusted network zones is fast changing in 
today's enterprise network. Enterprise networks are no 
longer a simple 2-trust level like they were a few years 
ago with “internal trusted” and “external un-trusted” 
zones. The requirement for protecting the resources at the 
service level is becoming more a reality, and the 
infrastructure to support this is at best expensive and 
difficult to justify from an IT security standpoint. Also, 
simply implementing network and service-level security 
such as firewalls, IPS, anti-virus, and a whole slew of 

defenses is not sufficient. In order to ensure these complex 
network and service-level security enforcements are 
functioning as desired, an automated and proactive 
security monitoring system is becoming more essential for 
enterprises. Proactive network security monitoring is 
required to validate the security implementations, 
patching, and provisioning of software to ensure it is not 
vulnerable to the most recent threats and to avoid costly 
network downtimes, security incidents, denial of service 
attacks, and worm and malware attacks, all of which 
impact productivity and service availability. In addition, 
regulatory and legal compliance requirements, such as the 
U.S. HIPAA, Sarbanes Oxley regulations and  European 
privacy laws, are getting more strict for all types of 
enterprises to ensure they are following the rules to protect 
their assets, resources, and information. 

Vulnerability scanning for the enterprise network to 
ensure compliance to minimum security specifications and 
auditing of network security policy to ensure it is 
implemented per the documented enterprise security 
policy are examples of add-on security monitoring that the 
enterprise IT would like to deploy extensively but which 
is limited due to the static nature of deploying these 
applications. Using the DVM approach, the ability to 
create instances/clones of systems that would be able to 
generate the required security monitoring functions would 
be extremely simplified. In addition, it would help create 
multiple views for network security assessments and 
monitoring. For example, in order to assess the 
effectiveness of network security implementations, such as 
firewalls, IPS, authentication/authorization, and other 
security enforcements, enterprises would have to perform 
the network security assessments/audits/scans from 
various parts of the network, such as from within the 
DMZ/internal network and from the external connected 
network. This would not only help validate the overall 
picture of the security posture for the network but also 
ascertain whether the implemented controls are sufficient. 
With DVM and the ability to “suspend, copy and resume” 
a VM, network security becomes relatively simple and 
cost effective. Another advantage of being able to 
inexpensively create multiple instances of the network 
security monitoring system would be to increase the 
speeds and parallelism of the results. Network security 
monitoring is then transformed from an infrequent and 
expensive annual or quarterly audit to a proactive one that 
can identify and fix security vulnerabilities as soon as they 
appear on the network.  

The DVM approach to network security monitoring as 
discussed above would help reduce the cost of 
provisioning these relatively complex 
auditing/monitoring/scanning applications as compared to 
the traditional method of static provisioning of standalone 
security monitoring systems. Using the DVM approach 
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would reduce the capital costs of the hardware and the 
cost of the provisioning tasks required to maintain 
physical systems for these functions. Operational costs for 
network security operational staff would also be reduced 
as network staff would be able to leverage the network for 
simplicity of “on-demand” VMs for the network security 
monitoring functions. Using the classical server/operating 
system/application model, and not the DVM model, it is 
almost impossible to monitor to the level required to be 
proactive enough to identify security gaps before they are 
widely exploited.  

Content Delivery 

A content delivery overlay provides a common service to 
various applications such as distributed file storage and 
sharing. Each overlay node maintains a small overlay 
routing table for finding the destination with the shortest 
path length of complexity O(logn), where n is the network 
size. But these overlay search algorithms make the 
underlying network transparent to the overlay and only 
find the shortest search path in terms of the number of 
virtual hops in the overlay.  

Safe Yet Realistic Experimentation 

A challenging aspect of enterprise environments is the 
difficulty of testing and introducing new or innovative 
services into an established infrastructure. Changes are 
strictly controlled because changes in the computing 
environment can negatively affect critical enterprise 
services. This is particularly true when introducing new 
services to an already running physical host. The new 
service or application may require system libraries and 
other software that could potentially break existing 
services if introduced. Moreover, usage loads introduced 
by new services on existing infrastructure (both network 
and CPU) can potentially starve existing services. Thus, 
the traditional enterprise approach is to bundle new 
hardware with each new service. Deploying new hardware 
for each additional service severely slows the introduction 
of new services, adds to the Total Cost of Ownership 
(TCO), and further complicates change control. Testing of 
new services is often done in isolated lab environments, 
where realistic conditions are difficult, if not impossible, 
to replicate. 

Alternatively, the ability to create VMs that are effectively 
isolated from each other and share resources fairly 
resolves these problems. The fundamental idea here is to 
decouple the introduction of new services from the 
deployment of new hardware. New services can be 
deployed on existing hardware by allocating VMs in the 
preferred service locations. The VM isolation shields 
existing services from library conflicts with new services, 
which are sequestered in their own individual VMs. 
Deploying new services on existing servers also speeds 

the development and testing of new services, in a realistic, 
closer-to-production environment without impacting 
existing services and without requiring installation of new 
hardware. 

Virtual Enclaves 

Within large and complex enterprises, there is a need to 
separate mission-critical environments from the rest of the 
organization. Critical areas like manufacturing should be 
immune to worms and malware that might proliferate in 
the rest of the organization, and access to these critical 
areas needs to be restricted to those individuals who need 
it. Fundamentally, these critical areas require their own 
separate enclave. The traditional approach to building 
these enclaves is to use dedicated hardware, as shown in 
Figure 2. This approach has several drawbacks. Deploying 
the entire infrastructure needed to make the enclaves self-
sustaining (such as DNS servers) is time-consuming and 
expensive. If the infrastructure in one of the enclaves goes 
down, there is no easy way of getting more resources, 
short of either repairing the down nodes or installing new 
equipment.  

 

Figure 2: Enclaves currently need to be implemented 
with physical partitioning and hardware firewalls 

The use of DVMs combined with overlay routing 
technology provides an innovative new way of deploying 
these enclaves. The VMs required by each service can be 
joined together with a secure overlay. The overlay isolates 
and controls access to the VMs as shown in Figures 2 and 
3.  
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Figure 3: A secure overlay network connects 
distributed virtual machines 

This approach has several benefits. If there is sufficient 
capacity, no new machines need be deployed. These new 
virtual enclaves can be deployed in a dynamic manner at a 
greatly reduced cost. If network segments go down, 
overlays can route around the problems. If hosts go down, 
VMs can be moved or allocated on other physical hosts.  

Extending Virtualization into Clients 

The computational, network, and storage resources of 
mobile devices (laptops and handheld devices) in an 
enterprise typically have low utilization and are not 
available for use by enterprise applications or services that 
could best utilize them. We envision an environment 
where the OS with which a mobile user interacts, is one of 
many OSs that run over VMMs. While the mobile user is 
interacting with the device, a VM dispatch service can 
request that the device’s VMM create VMs for a variety 
of tasks, as displayed in Figure 4. These tasks can range 
from doing computations to running services like file 
systems, content distribution, and other services like 
Voice over IP (VoIP). This work can be transparent to the 
end user and done in the background.  

 

 

Figure 4: Dispatching DVMs to mobile devices 

This architecture extending virtualization into clients and 
dispatching work via VMs to mobile devices has 
significant advantages over the current situation in most 
enterprises. Enterprises typically have low utilization of 
their mobile resources. Our proposed architecture enables 
better utilization and can potentially add enormous 
amounts of shared resources to an enterprise. It also has 
advantages when it comes to management of systems and 
services. Having a VMM underneath the OS visible to a 
user makes it easier to restart or rebuild the users’ OS. 
Services can take advantage of the location of mobile 
devices and dispatch service instances in VMs that are 
close to their designated clients. This frees a service from 
having to manage network parameters such as delay and 
throughput to a central site. The service is also easier to 
maintain in the face of node outages because work can be 
moved between mobile devices. 

The similarities between overlay networks and ad hoc 
networks, along with the technical merits that each 
introduce through their integration, motivated our interest 
to investigate and implement an alternative architecture of 
overlays on wireless mesh networks, called OverMesh 
[16]. Integrating overlays and wireless mesh enables 
OverMesh to be flexible enough to serve many 
networking purposes.  

While OverMesh is similar to current ad hoc, sensor 
networking, and peer to peer computing systems, it is also 
architecturally distinct from these systems. These are the 
differentiating properties of OverMesh: 

• Infrastructure-free: a peer-to-peer edge/access system 
is suggested over current hierarchical physical 
formations. 
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• Network virtualization: based principally on a 
distributed virtual machine overlay strategy. 

• Emergent control and manageability: utilize learning 
and statistical inference techniques to off-load 
human-dependency on operational management and 
provisioning. 

• Cooperative and adaptive end-to-end control: tighter 
layer integration and automation of application-to-
network control and management through cross-layer 
facilities.   

OverMesh can be applied to a variety of wireless mesh 
networks. At its current stage, we chose to realize it on 
one of the mesh networks that is being actively 
standardized—the IEEE 802.11s WLAN mesh network 
[17]. The PlanetLab service architecture [18] was 
customized and integrated with the WLAN mesh network  

to manage the DMV-based overlays. We believe that the 
implemented OverMesh platform will provide a unique 
testbed for developing a wide variety of services and 
applications on wireless mesh networks.  

An IT Overlay 

To experiment with, test, and deploy services using 
DVMs, Intel’s IT department has created the IT Overlay. 
We envision it as an overlay network that will include 
hosts within Intel and eventually extend to hosts residing 
outside of Intel’s firewalled perimeter, as shown in Figure 
5. Systems hosting VMs have been deployed at five sites 
within Intel, with more to be added as use of the IT 
Overlay increases. Intel is also part of the PlanetLab 
consortium, and Intel IT hosts two PlanetLab sites. Intel 
has deployed a monitoring service that takes advantage of 
the distributed nature of PlanetLab.   

 

 

Figure 5: The IT Overlay inside and outside of Intel’s firewalls 

The internal portion of the IT Overlay will be modeled 
after PlanetLab. Services will be able to make requests to 
a central authority that will dispatch VMs to run 
applications and experiments. We intend to use the 
interfaces and APIs created by PlanetLab to dispatch 
VMs, although the Overlay uses Xen* [5] domains for 
VMs rather than the VServers [19] implementation. We 
envision running security, network monitoring, and 
content distribution applications on the IT Overlay and 

opening it up as a testbed and deployment vehicle for 
DVM-enabled services.  

A CASE STUDY OF SERVER 
VIRTUALIZATION USING VMWARE 
Here is a brief history leading up to the discussion and 
decision to implement server virtualization for a 
manufacturing support group at Intel. This organization’s 
server population grew 65% over the last three years with 



Intel Technology Journal, Volume 10, Issue 3, 2006 

Virtualization in the Enterprise  237 

2006 projections meeting or exceeding this trend. As this 
organization grew and acquired servers, many of these 
acquisitions were waterfalled servers being released by 
other Intel business units. The initial costs made this type 
of acquisition financially attractive but as we move 
forward four years, most of these servers have reached 
their end of life. Another factor is that the primary 
datacenter for this group is projected to reach complete 
build out in 12-18 months with no plans to expand. The 
challenge for the organization was to continue supporting 
the server growth and replace aging hardware with limited 
datacenter space while maintaining the same high level of 
customer support.  

This group partnered with a forward-thinking IT group to 
evaluate, plan, and implement a virtual server 
environment. In this case study, we walk you through the 
steps, lessons, hurdles, and successes of this effort. The 
covered topics include software evaluation, candidate 
evaluation, hardware design, host hardware setup, virtual 
server setup, server testing procedures, and initial results.  

There are multiple factors to consider when evaluating 
and selecting server virtualization software. Our team 
carefully reviewed leading technology products and 
evaluated different system design options. The two most 
popular virtualization architectures were host-based 
virtualization (Microsoft Virtual Server 2005*; VMware 
GSX 3.1*; Microsoft Virtual PC 2004*; VMware 
Workstation 5.0*) and full virtualization (VMware ESX 
2.5*). 

Host-based virtualization requires the installation of a 
base OS first and then a VMM to be responsible for the 
execution of all VMs. In addition to the VMM 
application, the OS can execute other applications (e.g., 
Anti-Virus, Backup). The downsides to this type of 
architecture are a heavy performance penalty, high system 
resources utilization by host system management, 
additional work to support host maintenance and 
management, and the upkeep of host security. 

The full virtualization design starts off with the 
installation of a mini kernel (a hypervisor optimized for 
virtualization) on the physical server. This kernel uses 
minimal system resources since it focuses only on tasks 
required for virtualization, and it does not run unnecessary 
processes or applications. The hypervisor provides full 
hardware virtualization and distributes the necessary 
system resources to all VMs. Each VM contains its own 
OS and cannot distinguish it is running on virtualized 
hardware. This architecture is ideal for consolidating high-
end datacenter solutions. 

The decision process to determine the proper 
virtualization architecture is a critical and time-consuming 
task. Our team researched benchmarking results of 

multiple virtualization products and analyzed the cost and 
supportability options. We prioritized our list of 
requirements and rated the various software options. We 
evaluated four products against our requirements and 
scored their performance. Our requirements included 
performance, manageability, supportability, stability, 
security, and a wide range of capabilities. Table 1 is an 
example of how we did our comparison: (utilizing 
fictitious data). 

Table 1: Product evaluation scorecard example 

 

After evaluating the scores, we selected a full 
virtualization software solution for our virtual server 
environment.   

When virtualizing a datacenter, the project’s success is 
directly dependent on choosing the appropriate 
candidates. We approached this step by defining our 
virtualization strategy for this business unit. First, we 
divided their server environment into four categories:  

• Ideal candidates 

• Candidates 

• Potential candidates 

• Not a candidate  

To categorize each server, we started by collecting data on 
performance, system utilization, end-of-service timelines, 
business area, and application specifics. Once the 
selection criteria data were collected, we mapped our 
servers against the selection criteria to determine in which 
virtualization category a server belonged. Once 
categorized, our team focused on 75 candidates and 
worked with the business unit to evaluate application 
specifics and machine load analysis. With our 
performance evaluations and customer input, we 
assembled the server requirements: 

• CPU consumption 

• Required memory 

• Disk I/O intensity 
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• Network requirements 

• OS configuration  

We used these data when evaluating different hardware 
platforms for our virtualization environment.  

To maximize Return on Investment (ROI), number of 
virtual systems, and performance, this team’s final choice 
for the virtual host servers was the 4-way Dual-Core Intel® 
Xeon® processor 7040Φ 3.0 GHz-2 MB L2 cache system 
with 16 G of RAM, 2 x 2 Gb, 64-bit/133 MHz PCI-X-to-
Fiber Channel Host Bus Adapters and three Network 
Dual-Port PCI-X 1000T Gigabit Server Adapters.  

The hardware selected for this virtual environment is 
based on an Intel IT standardized platform. The team 
focused on designing a robust virtual infrastructure 
without introducing single points of failure. This design 
would address our customer’s primary concern with 
consolidation of multiple applications to a single physical 
machine.  

The team agreed on an environment that would be 
immune to hardware failure and power interruptions while 
possessing the ability to load-balance. The consolidated 
applications would reside on host servers containing dual 
power supplies, mirrored hard drives, and teamed network 
interface cards. The centralized storage solution selected 
is a multi-terabyte storage area network (SAN) with full 
fault-tolerant capabilities. Connections to the host servers 
were made possible through two 2 Gb fiber channel 
switches configured with redundant paths. This design 
enables load-balancing, as all VM files reside in a central 
location and access is possible by each host. Figure 6 
shows the details of this design.  

SAN
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 Host 1 Backup 

Network 
100MB

Public 
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Fiber Channel 

Network
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Virtual
 Host 3
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 Host 4
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Figure 6: Layout of virtual environment detailing the 
built-in redundancy  

Utilizing an available software feature, VMs can be 
migrated to another physical host. This migration is done 
in an active state and causes no server downtime while 
applications continue to operate uninterrupted. End users 
are unaware of such migrations. We use this tool to aid in 
managing downtimes, load-balancing, and other resource 
alignment needs. 

After reviewing multiple virtualization case studies, the 
team agreed on a 20:1 consolidation ratio limit of VMs to 
a single physical system. Our initial design consists of 4 
physical machines with 15 virtual guests configured on 
each. This will incorporate 60 ideal candidates targeted 
for consolidation while reserving resources for potential 
migrations. In case of physical server failure, the VMs on 
the failed host would migrate to the 3 remaining hosts as 
seen in Figure 7. This will permit 5 additional VMs to 
migrate to each host, respectively, maintaining the 20:1 
consolidation and 100% availability. 
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Figure 7: Demonstration of failover when a host 
system fails 

It was easy to justify this project because we were up 
against several looming obstacles. First, the hardware in 
use was aged and being purged from our current 
supportability model. Replacement of this hardware on a 
one-for-one basis was very costly. Second, the datacenter 
is constrained by space and power. We needed a solution 
that would free up physical space in the computing 
environment. By replacing out-dated servers with virtual 
servers, we not only saved ~40% on hardware upgrade 
costs but more importantly extended the capacity of our 
datacenter. This basic ROI did not investigate costs 
associated with power, network, AC, etc. Figure 8 shows 
our first-year ROI. 

 

 

Figure 8: Our first-year ROI calculation (software 
costs are approximations) 

As the approval, purchasing, and installation of the actual 
virtualization island was in process, the team utilized a 
validation environment to begin building server 
configurations and testing potential candidate servers. To 

do this, we established an overall test, validation, and 
implementation plan for our “Ideal Candidate” servers. 
We notified the owners of these machines of the timeline 
for testing and identified our criteria for a successful test.  

The technical team defined and created a “gold build” 
server definition (based on the data collected during 
server classification). 

As the testing timeline progressed, server owners were 
notified three weeks prior to their servers being created. 
This notification included a detailed timeline for the next 
five weeks and the requirements for completing a 
virtualization test. Two weeks before testing began, the 
server owners met with the virtualization team to discuss 
special requests, variations from the gold build 
configuration, and to approve VM resource allocation. 
After this meeting, the technical team provisioned the new 
servers and kept them in a “power off” status. The server 
owners then had to prepare their test plan, success criteria, 
and migration strategy during these two weeks. The test 
plan had to include a regression test for any application 
installed on the server to ensure it executed properly, 
along with the server functions. Two days prior to the start 
of virtual server testing, test plans, success criteria, and 
migration plans were reviewed and approved. Once all 
requirements were met, the servers were released to the 
testing team to build their applications, copy data, and 
configure the server with all required software and 
application information. The test team did all OS and 
application testing in a two-week period and met with the 
virtualization team at the end of the two weeks. When all 
success criteria had been met, the server was shut down. 
Once the final hardware landed in the datacenter, the 
server configurations were moved to the production 
hardware, restarted, and each test group did a quick 
validation to ensure the server was in the state it was shut 
down in.  

That was  when the virtualization team turned over the 
“keys” to the server owner and the owners executed their 
migration plan and moved the physical machine contents 
to the VM. When the final migration was complete, the 
physical machines were powered off and removed from 
the datacenter within 30 days. 

RESULTS 
When this Intel® business group set out to upgrade its 
computing environment, the expected results were to have 
an equal environment to the existing one. After the server 
virtualization was completed, the expected ROI was 
realized along with additional benefits such as datacenter 
floor space, power, cooling, and network relief as well as 
easier manageability for the IT support team. This 
installation also built a solid production platform to begin 



Intel Technology Journal, Volume 10, Issue 3, 2006 

Virtualization in the Enterprise  240 

deploying enterprise services and monitoring capabilities 
through provisioning of virtual servers for these purposes.  

CONCLUSION 
In this paper, we explored the issues of implementing 
virtualization in the enterprise. We analyzed IT services 
and looked at how those services would be impacted in a 
virtualized environment.  

We looked at several use cases being currently 
investigated by Intel’s IT department. The DVM concept 
provides a new way of looking at deploying services, and 
it enables a further use case that we are exploring with our 
OverMesh implementation and the IT Overlay. 

We presented a case study of virtualization of a datacenter 
in which the VMware ESX Server was used that allowed 
us to consolidate 20 or even more servers onto a single 
physical server reducing hardware, electrical, cooling, and 
administrative costs. Our solution provides robust 
resource controls for different types of applications, and 
we can control the levels and limits of CPU, networking, 
memory, and disk I/O allocated to and used by each 
virtual system.  

Utilizing the virtual environment, IT can quickly create 
new servers; and virtual servers can be deployed in 30 
minutes vs. 60 days to purchase and deploy a physical 
server. We achieved our goals to minimize our physical 
footprint in the datacenter, lower our administrative costs, 
improve our network uptime, and deploy new servers and 
applications faster. According to Thomas Bittman, 
research vice president and distinguished analyst at 
Gartner Inc., “integration of virtualization technology with 
the operating system is a natural evolutionary step for the 
x86 platform.”  
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