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USING OS OBSERVATIONS TO
IMPROVE PERFORMANCE IN

MULTICORE SYSTEMS
.........................................................................................................................................................................................................................................................

TODAY’S OPERATING SYSTEMS DON’T ADEQUATELY HANDLE THE COMPLEXITIES OF

MULTICORE PROCESSORS. ARCHITECTURAL FEATURES CONFOUND EXISTING OS

TECHNIQUES FOR TASK SCHEDULING, LOAD BALANCING, AND POWER MANAGEMENT. THIS

ARTICLE SHOWS THAT THE OS CAN USE DATA OBTAINED FROM DYNAMIC RUNTIME

OBSERVATION OF TASK BEHAVIOR TO AMELIORATE PERFORMANCE VARIABILITY AND MORE

EFFECTIVELY EXPLOIT MULTICORE PROCESSOR RESOURCES. THE AUTHORS’ RESEARCH

PROTOTYPES DEMONSTRATE THE UTILITY OF OBSERVATION-BASED POLICY.

......Multicore processors include several
independent processing units in a single
package.1 These chip multiprocessing
(CMP) processors are already available in
dual- and quad-core desktop and server
platforms.2 The cores in a CMP system can
share certain resources—for example, last-
level caches or various internal system buses.
Another type of multicore system is simulta-
neous multithreaded (SMT) processors, also
known as hyperthreaded processors.3 These
chips look like multiple cores, but they
implement each virtual core with a combi-
nation of functional units within a traditional
processor. By their nature, SMT processors
share resources within a die, but they achieve
good parallelism when application threads
don’t compete among themselves.

The roadmaps of most major micropro-
cessor manufacturers include proliferations
of multicore designs—for example, designs
containing many hyperthreaded cores. It’s

not unreasonable to expect the complexity
of such systems to increase over time.
Indeed, Intel has demonstrated a prototype
system with 80 cores.4

In general, operating systems exploit
multicore systems by using a multiprocess-
ing kernel (Linux and Microsoft Windows
use a symmetric-multiprocessing, or SMP,
kernel). The kernel treats each core as
though it were a completely separate
processor, with separate caches sharing a
coherent view of main memory. Applica-
tions today are written to expose software
execution threads, and the OS maps these
threads onto computation resources (SMP
processors). Although the SMP kernel also
works for CMP systems, it is naive with
respect to the processor’s actual internal
workings—it cannot exploit CMP features
and cannot avoid CMP challenges.

Modern processors also include hardware
features for monitoring the CPU’s perfor-
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mance and behavior. Programmers often
use these counters to improve application
performance by monitoring sections of code
to detect and optimize hotspots in a
program’s execution. For example, the Intel
Vtune system allows programmers to opti-
mize for cache usage and floating-point and
multimedia extensions (MMX) instruction
usage.

We posit that in a multicore environ-
ment, the OS can and should make
observations of the behavior of threads
running in the system. These observations,
combined with knowledge of the processor
architecture, allow the implementation of
different policies in the OS. Good policies
can improve overall system performance,
improve application performance, decrease
system power consumption, or provide
arbitrary, user-defined combinations of
these benefits. The data we present here,
from different processor and system config-
urations and two different operating sys-
tems, support our hypotheses.

Experimental environments
Our experimentation involved several

different software and hardware environ-
ments. In this section, we describe the most
representative configurations, some of the
challenges these environments present, and
the prototypes we built to validate our
observation-based scheduling policies.

Software environment
For quite some time, application pro-

gramming has included the notion of
execution threads. Programming languages
and libraries support mechanisms to spawn
threads, to communicate between threads,
and to synchronize execution among
threads. Operating systems use a scheduler
to multiplex threads on a unicore processor
or map them to a set of SMP processors. At
compile time, programmers usually have no
knowledge of the configuration of the
machine that will execute the application
(other than its instruction set architecture).
At runtime, applications—or system ad-
ministrators—can only express basic hints
about preferred options to the OS by
assigning relative priorities and processor
affinities to certain threads.

Contemporary operating systems attempt
to schedule execution threads in a fair and
low-overhead manner. Most simply, they
balance the load across processors by
migrating tasks to keep the run queues
approximately equal. Some optimizations to
this scheme are also possible; for example,
recent Linux kernels hesitate to migrate a
thread to a different SMP processor if the
cache is ‘‘hot’’ (that is, a large quantity of
the thread’s data appear to be present in the
cache).

Our work involves modifying OS deci-
sions to explicitly accommodate multicore
processors under dynamic workloads.

Challenges
The platforms we have studied present

several difficulties:

N Cache interference in the last-level cache
(LLC). If a task runs on core A, it can
use the entire LLC. Another task,
running on core B, shares the LLC
resource; the resulting contention
slows both tasks. Worse, the amount
of contention is quite dynamic because
it depends on each task’s behavior at a
given time. This behavior is impossi-
ble for the application to know at
compile time.

N Lack of intelligent thread migration.
Linux and OS X include migration for
basic load balancing, but they treat
each core equivalently, without the
notion of resources shared among
cores.

N No accommodation of cores with differ-
ent features. Current Intel-compatible
multicore implementations feature
cores that are exact copies of each
other. In the future, however, some
cores will likely be functionally asym-
metric for reasons of power, die area,
cost, and complexity.

We have explored three policies in detail
to address these challenges. Because cache
interference can severely degrade task per-
formance, we developed policies that use
observed task behavior to mitigate interfer-
ence by altering OS scheduler decisions. To
keep cache loads approximately equal across
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LLCs, we developed a prototype policy that
affects OS migration decisions on the basis
of similar observations. We investigated
mechanisms to improve fairness in cache
usage. Finally, to handle cases in which
cores provide different features, we imple-
mented a policy of observation-based mi-
gration among functionally asymmetric
cores. Our results show the benefits of these
policies.

Observations let us know about a task
without having to know exactly what it is
doing. History and hysteresis let us accom-
modate changes in behavior from phases of
an application and adjust accordingly. We
have developed an observation subsystem
that collects historical and hysteretic data
and makes them available to various
policies.

System environment
We achieved the Linux results we

describe in this article by running kernel
version 2.6.20 on a quad-core Intel
Xeon 5300 series processor. This processor
features two 4-Mbyte LLC arrays, each
shared by two cores. We call one cache and
the cores that access that cache an LLC
group.

We performed our experiments on the
Macintosh platform under the Macintosh
OS X Tiger release on an Intel Core 2 Duo
T5600 processor. (Lacking source code to
the production operating system, we used
the open-source Darwin OS X code base for
our Mac experiments.) The chip includes
two cores that share a 2-Mbyte LLC.

Prototype systems
We implemented several prototypes to

develop our observation-based policies and
to demonstrate the benefit derived from
each. The foundation of each prototype we
describe in this article is our observation
subsystem. Atop that, we developed proto-
type systems to reduce cache interference, to
migrate tasks more intelligently, to improve
per-task fairness, and to accommodate
functional asymmetry within a system.
The remainder of the article discusses each
of these prototypes and the data we derived
from experiments on each.

Observation subsystem
OBS-M inspects relevant performance-

monitoring counters and kernel data struc-
tures and gathers information on a per-
thread basis. By taking a brief snapshot at
context-switching time (that is, the begin-
ning and end of each thread’s execution
period), OBS-M gathers per-thread infor-
mation in a very low-overhead manner. It
then makes the observed data available as
input to various policies. Empirical mea-
surements of tasks running with and
without OBS-M show that the overhead
we add (generally less than 1,000 clock
cycles) is virtually indistinguishable from
the standard kernel.

For cache-related policies, we program
the processor counters5 for several measur-
able events:

N LLC misses (INVALID_L2_RQSTS),
N LLC references (L2_RQSTS),
N instructions retired (INSTR_RETIR-

ED.ANY),
N core cycles (CPU_CLK_UNHAL-

TED.CORE), and
N reference cycles (CPU_CLK_UN-

HALTED.REF).

For feature-related policies, such as those
that accommodate functional asymmetry,
OBS-M hooks the system exception handler
and looks for (among other things) system
faults that indicate attempts to use features
that the core doesn’t offer. When such a
fault occurs, OBS-M disassembles the code
that caused the fault and notes which
unsupported execution was executed. It
maintains the counts, types, and frequencies
of such illegal instructions on a per-task
basis.

Policy: Reducing cache interference
We implement polices for local-cache

scheduling in a module called OBS-L. The
prototype implementing this policy con-
sumes per-task observation data related to
cache usage and affects scheduling decisions
to reduce interference among processes
running on cores that share an LLC.
OBS-L synthesizes a cache weight for each
task, using raw metrics from OBS-M.
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We explored various definitions of cache
weight to find the most useful input to
scheduling policy. To gauge cache usage, we
considered several choices. For example, the
LLC miss ratio distinguishes threads that
are likely to sully the cache of their
corunners. However, using only the ratio
doesn’t distinguish between threads with
potentially large differences in the absolute
number of cache references. We also
considered using the absolute number of
cache hits, misses, or references. Although
these reflect actual cache usage, scaling them
(both because of thread behavior and
varying quantum length) is a difficult
problem. In the end, our experimentation
found that cache misses per cycle are the
best indication of cache interference.

Another question was how to predict
future behavior from historical behavior.
After testing our policies with task lifetime
averages, running averages, and weighted
averages, we decided that simply basing the
weight on the metrics from the immediately
past quantum (that is, using temporal
locality as our predictor) is the best solution.
Because the metering system doesn’t have
detailed knowledge of what a task is doing,
it is difficult to detect behavior phases or to
predict cache usage burstiness. We expect
that higher-level hints in the form of
annotations from the compiler or program-
mer might change this determination, but
that is a subject of future work.

We implemented observation and sched-
uler modifications in Linux and Macintosh
OS X, adding a policy to reduce cache
interference among cores sharing a last-level
data cache. We augmented the run-queue
structures in both operating systems to
include bins of similarly weighted tasks at
the same priority level. The scheduler policy
attempts to keep the sum of the cache
weights of all the currently running pro-
cesses close to a medium value. When core
0 is ready to be assigned a new task, the
scheduler examines the weights of tasks on
other cores and chooses a task whose weight
best complements the corunning tasks for
core 0. Thus, heavy and light tasks tend to
be coscheduled on the shared cache,
avoiding the interference that results from
coscheduling two heavy tasks. Figure 1

pictorially shows the difference between
coscheduling two heavy tasks versus cosche-
duling heavy and light tasks together in a
dual-core processor.

Our system preserves task priorities
explicitly, so that we don’t risk changing
fairness or causing starvation among tasks in
the OS. In future work, we might relax
priorities somewhat to achieve even better
overall system performance.

Linux prototype results
First, we ran experiments with micro-

benchmarks to approximate best-case re-
sults. The cachebuster (cb) application
simply consumes as much cache as possible
as quickly as possible; the algorithm
deliberately modifies memory to thwart
the LLC’s benefit. Spinloop (sl), on the
other hand, consumes CPU with a mini-
mum of memory access. For two cores that
share an LLC, pairing [cb, sl][cb, sl] results
in the worst performance because both
cachebuster applications contend for cache
resources at the same time. (The notation
[x, y][z, w] indicates threads x and y
scheduled on one core in order x then y,
and threads z and w scheduled on another
core in order z then w.) Our experiments
showed that in this worst case, cachebuster
performance degrades between 26 and 30
percent compared with running in an
uncontended environment.

As mentioned earlier, OBS-L attempts to
schedule heavy and light tasks together,
ideally resulting in a task-to-core mapping
of [cb, sl][sl, cb]. OBS-L’s observation-
based policy often can schedule this way and
indeed improves performance, resulting in
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an average 30 percent speedup over the
normal Linux scheduler (and a 73 percent
improvement over the worst-case mapping).

To approximate real-world workloads,
we ran our OBS-L experimental setup with
a set of applications from the SPEC CPU
2000 suite run continuously in an infinite
loop in a method similar to that of Bulpin
and Pratt.6 We based our selection of
applications largely on analyses by Zhao et
al. to provide a mixture of cache behaviors.7

We ran two instances each of mcf, eon,
sixtrack, and swim across two cores that
share an LLC. The cache-heavy task mcf
improved between 18 and 22 percent, and
the cache-medium task swim improved 11
percent. However, the lighter-weight tasks
suffered a performance degradation of
between 1 and 5 percent. To determine
overall system performance improvement,
we calculated the geometric mean of all
tasks’ speedup ratios, a method proposed by
Zhang et al.8 The observation-enhanced
local scheduler resulted in a net 6 percent
overall system speedup.

Figure 2 shows the results for our
comparison workload. Each group along
the horizontal axis represents one applica-
tion in the workload; the group labeled
‘‘Overall’’ shows combined results for the
whole system. The ‘‘Stock’’ bars indicate the
performance under unmodified Linux; this
is our normalized value, and as such is
always 1.00.

Macintosh prototype results
We ran similar experiments on our

Macintosh prototype. Tests with cachebus-
ter and spinlock demonstrated its benefit in
the OS X environment. Cachebuster
showed a speedup of approximately 65
percent with OBS-L. The SPEC workloads
also benefited. The performance of mcf
increased by 5 percent, and swim improved
approximately 13 percent. As in our Linux
experiments, the lighter tasks eon and
sixtrack showed slight (2 to 3 percent)
degradation. Overall system speedup was
just over 3 percent.

These results, although not always as
good as our Linux results, are nonetheless
encouraging. We observed some unex-
plained behavior in OS X’s scheduling of

tasks and interrupt handlers, which may
have diminished our system’s benefits. We
plan to continue experimentation with
newer public versions of OS X as they
become available.

Policy: Migrating across caches
OBS-L uses observations to affect sched-

uler decisions. We created an additional
policy engine called OBS-X (for cross-
cache), which uses observations to affect
task migration decisions in the OS. OBS-
X’s goal is to distribute cache-heavy threads
throughout the system, not only helping
spread out cache load, but also providing
more opportunity for OBS-L to achieve
benefits with its local policies.

In Linux, task migration occurs as part of
the load balancer. The default policy
attempts to keep all run-queues the same
length, while minimizing migration costs.
The OBS-X prototype uses its observations
of each task’s cache usage to alter the load
balancer’s decisions.

When a new task is created, OBS-X looks
for the LLC group with the smallest cache
load. The new task is placed in this group
and then becomes eligible for migration
through any of the policies in force.

OBS-X also includes the notion of
overweight tasks. For each LLC group,
OBS-X tracks the average cache weight of
the tasks in that group. A task is overweight
if its cache weight is greater than the average
weight in its group. OBS-X attempts to
prevent migration of overweight tasks, both
to avoid excessive migration costs (such
tasks, if migrated, have to warm up a new
cache) and to prevent these tasks from
creating new cache interference in a new
location.

Periodically, OBS-X balances the cache
load by moving an overweight task from the
cache-heaviest LLC group into the currently
lightest LLC group. Despite the potential
migration cost, this lets the system dynam-
ically adjust and seek optimal distribution
of cache-intensive tasks as the overall
workload changes over time.

Results
We ran two sets of experiments across

four cores in two LLC groups, using the
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same job mix as in the previous OBS-L
experiments. Because the number of cores
was doubled, the number of threads also
doubled for each workload. We ran each
experiment continuously for 30 minutes,
restarting each task until the period com-
pleted.

The first set of experiments consisted of
four instances of cachebuster and four
instances of spinloop, totaling eight threads
on four cores. For this workload, OBS-L
with the default Linux load balancer
produced between 8 and 18 percent
speedups for the heavy cachebuster tasks.
With the addition of OBS-X, cachebuster
performance increased between 12 percent
and 62 percent. The reason for the increase
is that OBS-X distributed the cache-heavy
tasks across LLC groups, thus minimizing
the scheduling of heavy tasks together. To
verify this, we traced the migration of
cachebuster and spinloop tasks while run-
ning OBS-X.

Figure 3 (next page) shows the migration
of cachebuster tasks between two LLC
groups over a 10-minute interval with
OBS-X running. The four cachebuster tasks
are indicated in different shades of gray.
The spinloop tasks are not shown. Most of
the time, OBS-X ensures that the system is
balanced; for example, there are only two
heavy cachebuster tasks in each LLC group.
Occasionally, three cachebuster instances
briefly share an LLC before OBS-X makes
its corrections.

The second set of experiments used the
same SPEC job mix as the OBS-L exper-
iments shown in Figure 2. We ran four
instances each of mcf, eon, sixtrack, and
swim, totaling 16 threads on four cores. In
terms of OBS weight, mcf is the heaviest,
swim is medium, and eon and sixtrack are
the lightest tasks. Figure 4 (next page) shows
the results for our comparison workload. For
simplicity, we show aggregated results for
each task (the average of results for each
instantiation). The ‘‘stock’’ group indicates
performance under unmodified Linux; we
normalize to this value, so each bar shows
1.0. The OBS-L group shows an overall
speedup of 3.2 percent with four cores.
Adding OBS-X, the overall speedup increases
to 4.6 percent. As in Figure 3, the heavy

tasks are evenly distributed most of the time,
but there are short intervals when they are
not. In Figure 4, the heavier tasks (mcf and
swim) improve from stock to OBS-L to
OBS-X; however, the lighter tasks show less
than 3 percent degradation.

Policy: Addressing fairness
In experimenting with OBS-L and OBS-

X, we found that cache-light tasks could
experience a small performance degradation
(less than 5 percent) because they were more
likely to be coscheduled with cache-heavy
tasks. These changes show that although we
maintain fair access to CPU time based on
priority, fair access to the CPU is insuffi-
cient to ensure that all applications make
equal progress. To alleviate this, we added
an extra policy heuristic to credit CPU time
back to applications that suffer from
running with heavy tasks. Under this policy
(implemented as OBS-C), the system
computes the difference in weights between
any coscheduled tasks and transfers CPU
time (tcredit) proportionally from the heavier
to the lighter task. As the following
equation shows, the amount of credit is
proportional to the weight difference be-
tween the tasks, scaled by the amount of
time the light task overlapped, and multi-
plied by a constant ccredit representing the
percentage of system time reserved for
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allocation to tasks that suffer degradation:

tcredit ~
wlight task

wlargest { wsmallest

| toverlap | ccredit

Like the policy proposed by Fedorova,
Seltzer, and Smith,9 OBS-C adjusts CPU
time to compensate for differences in cache
utilization. In contrast, however, OBS-C’s
use of the task’s cache weight eliminates the
training phase required to estimate the
uncontended fair cache miss rate.

Results
For our OBS-C policy, we evaluated

values of ccredit between 0 and 5 percent in
experiments with seven varied workloads
composed from 13 SPEC CPU 2000
benchmarks. Figure 5 illustrates results
using the same job mix from our ‘‘reducing
cache interference’’ prototype, described
earlier as OBS-L, showing the range of
performance variation versus stock Linux
for all applications. From these experiments,
we heuristically determined that a ccredit

value of 2 percent achieved the preferred
trade-off between the policy’s goal—that no
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tasks perform worse under OBS-C than
under stock Linux—and maximizing overall
performance.

Figure 6 (next page) shows that the
addition of OBS-C to OBS-X almost
completely eliminated performance degra-
dation (the worst case is 99.7 percent of
stock Linux performance), while the average
speedup increased from 4.6 to 5.6 percent.

Policy: Accommodating
functional asymmetry

Using another part of OBS-M’s observa-
tion data—the frequency of certain instruc-
tion types—we built a policy engine (OBS-
F) to accommodate processors that offer
different features on different cores.

Lacking real asymmetric hardware, we
designed an infrastructure to simulate
functional asymmetry in an existing multi-
core system. We used CPU-specific flags to
disable floating-point (FP) and SIMD
instructions (including MMX and stream-
ing SIMD) instructions on a subset of cores
in the system. With these functions dis-
abled, invalid instructions executing on a
core trigger a device-not-available (DNA)
exception. Linux itself uses a similar
mechanism to save FP state when a thread’s
context ends; however, Linux resets the

CPU flags to permit FP operations after
such a fault.

The most basic part of OBS-F’s policy is
to observe the DNA fault that arrives and
store this information among its observa-
tions of the task. Rather than simply letting
the application fail, OBS-F catches the fault
and forces the task to migrate to a core that
can execute the faulting instruction. We call
this naive policy OBS-F1.

A second version of the policy (OBS-F2)
monitors the task after it migrates, looking
for a sufficiently long period of not issuing
instructions that would fault on a non-fully-
featured core. After a sufficiently long
period, it re-enables the task to migrate
freely, and the other OBS policies (or the
OS default policies) can move the task
through the system.

In another aspect of the policy, OBS-F
tracks the accumulation of unavailable
instructions over time (total number and
number of faulting quanta). Using the task’s
history, OBS-F can determine that the
frequency of faulting instructions is high
enough that the task should be banned from
a core for the rest of its life in the system,
saving both migration costs and cache
interference caused by a task’s frequently
moving to and from FP-enabled cores.
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To explore the effects of these policies,
we parameterized the OBS-F prototype to
allow experimentation with various settings.
Most important among these are thresholds
on the number and frequency of invalid
operations and the length of time without
invalid operations. Depending on the cost
of the DNA fault, the cost of migrating a
task among cores, and the number of fully
featured versus partially disabled cores,
other thresholds in the OBS-F policy engine
might be more advantageous to a particular
platform.

Results
We ran various workloads on our

scheduler, using our quad-core test system.
Cores 1 and 3 are little: that is, we disabled
the special instructions FP and SIMD on
them. Cores 0 and 2 are big cores—that is,
they have a complete feature set. We used a
workload consisting of four programs from
SPEC CPU 2000:

N gzip, which periodically uses special
instructions;

N vortex, which uses special instructions
only at the beginning and end of its
execution; and

N facerec and sixtrack, which heavily use
special instructions throughout their
execution.

Figure 7 shows the special-instruction
count we measured over a representative
period for gzip and facerec.

We ran this workload in three configura-
tions. Figure 8 shows the results. The first
and most basic configuration is stock Linux.
Since no task in our workload is entirely
without special instructions, each one crashes
when run on a little core; we show this in the
graph with a performance of 0 for stock.
OBS-F1 observes the fault and moves
offending tasks to big cores, disallowing
migration to a core without the required
features. The figure shows our normalization
of each task’s performance to 1.

Our OBS-F2 policy allowed migra-
tion back to little cores. Our heuristic was
to re-enable migration if the task didn’t
perform any special instructions in the
previous quantum. We found this a rea-
sonable heuristic given the workloads
and migration costs of this platform. The
results were a greater performance (dou-
bling or nearly doubling) because our
observations and policies allowed an effec-
tive assignment of each task according to its
behavior.

Other observation-driven policies
There are several other policies that can

be easily implemented with our observa-
tion-based scheduling methods. We have
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begun investigation of several of these,
specifically looking at contention for in-
core functional units, different power states
among cores, and applicability of our work
to virtualized multicore environments.

Reducing functional-unit interference
Hyperthreaded processors present the

illusion of two cores by implementing two
instruction pipelines that share functional
units in one processor or one core. Properly
implemented hyperthreading improves per-
formance by allowing parallel execution in a
core. Increased transistor densities allow the
duplication of more functional units in a
core; however, it is not clear that all cores in
a system will have the same set of duplicated
features. Nakajima and Pallipadi describe
preliminary techniques using performance
counters to observe memory contention
among logical cores.10

Hardware observation of contended re-
sources will be an important feature in
future processors. Observation of conten-
tion, such as we already have implemented
for cache and floating point, will allow the
OS to implement analogous policies—
either to migrate a task somewhere with
less contention or to credit CPU time back
to a task that has suffered disproportionately
from contention.

Multicore power management
Currently available multicore systems

support power management, specifically
dynamic voltage and frequency scaling
(DVFS). In some cases, all cores must run
in lockstep at the same frequency. Other
implementations allow cores to change
power states independently. Initial research
indicates that OS-level observation—of
both hardware power events and per-task
activity—will enable better power manage-
ment policies.11 For example, tasks that are
largely memory bound might run on a
lower-power core and obtain similar per-
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Related Work

Tam, Azimi, and Stumm implemented a system that, like ours, uses

hardware features (Power5-architecture performance-monitoring units) to

decide to migrate threads throughout an SMT/CMP/SMP platform.1

Specifically, the system maintains vectors of cache accesses to detect

threads that share data and examines memory access stalls to determine

which threads are using data from a faraway cache. The system uses this

information to group related threads and attempts to coschedule those

groups to maximize sharing and locate threads close to data needed by

the threads. Experiments with server workloads demonstrated a 5 to 8

percent overall speedup in each case.

Suh, Devadas, and Rudolph propose a different methodology,2 which

defines marginal gain as the derivative of a task’s cache-miss ratio curve

over time.2 To measure marginal gain, they propose a set of hardware

counters and modifications to cache controllers. They use this metric for

task scheduling task and cache partitioning. In simulations of various

cache sizes and configurations, the authors show that their observations

produce significantly fewer cache misses for several SPEC applications.

In contrast to our focus on throughput, Kim, Chandra, and Solihin have

explored methods to ensure fairness—specifically, making sure the effect

of cache contention is uniform across tasks.3 They use a stack-distance

profile4 (similar to marginal gain2) as input to two schemes. In a static

scheme, they run each candidate task alone to get metrics used to partition

the cache when those tasks are later coscheduled. To accommodate varied

runtime task behavior, a dynamic scheme alters cache partitions periodically

using performance deltas from the immediately previous repartitioning.

Both schemes require either hardware partitioning support or modifications

to the cache replacement algorithm. In simulated experiments, the authors

succeed at improving fairness and thus derive a nontrivial (8 to 15 percent)

performance boost in their simulated hardware.

Cho and Jin share our belief in active OS participation in cache

management.5 Their work involves simulation of a tiled CMP processor,

comparing private and shared caches among cores in a platform with a

novel architecture in which memory pages map into ‘‘cache slices.’’ With

this enhancement, the OS, using its knowledge of memory page usage, can

make intelligent cache management decisions. The authors demonstrate

that moving this functionality into the OS allows flexibility to imitate

existing hardware mappings and to provide a virtual multicore processor by

placing thread data in similarly shared cache slices and carefully choosing

distance from cores to cache slices. Cho and Jin’s work would likely

complement our research, but reconciling their simulated architecture with

our experimental setup would pose a significant challenge. Lin et al. have

also done work in which the OS is an active participant; however, their goal

is more focused on partitioning the cache among tasks.6

Similar to our functionally asymmetric prototype, the MISP (multiple

instruction stream processor) system provides fully featured cores,

managed by the OS, and small cores, managed by applications via a

shred library.7 The system also adds a user-level hardware fault

exception. When an application-managed core incurs an exception or

performs a system call, it triggers a user-level fault. The system fault

handler (in ring 3, or application space) then migrates the faulting shred’s

state to one of the OS-managed cores via a new instruction called Signal.

This instruction carries certain state information and works like a user-

level interprocessor interrupt. Upon receiving the signal, a big core

resumes the migrated shred’s execution, thus repeating the original fault,

which is then handled on the big core in ring 0. After this proxy

execution, the OS-managed core migrates the shred back to its original

application-managed (small) core and resumes execution.

Wang et al. extend MISP to heterogeneous systems with completely

different instruction set architectures in their Exochi system by defining

compiler extensions to support user programming in a diverse

environment.8 Their prototype demonstrated an Intel Core 2 processor

and an Intel graphics card, with tasks faulting and migrating back and

forth for features only offered by the big core.

------------------------------------------------------------------------------------------------------------------------------------------------------------
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formance, whereas computation-intensive
tasks might benefit from migration to a
higher-speed or higher-power core. We
expect that combining our existing per-task
observation framework with heuristics re-
lating performance to frequency will im-
prove task scheduling in a DVFS multicore
environment.

Virtualization
The main focus of the prototypes

described in this article has been to seek
optimal mapping of OS tasks to the
system’s computing resources. We have also
investigated observations and policies for
mapping virtual machines (VMs) to com-
puting resources. We instrumented the Xen
hypervisor to collect similar cache and
memory observations on a per-VM basis.12

We found that runtime observation of
behavior is even more important for VMs
because an even greater opacity prevents
knowledge of what a VM is doing or will do
next. Indeed, although compiler or devel-
oper hints for application behavior are
conceivable, the nature of running applica-
tions on an OS in a VM further precludes
the chance of getting behavior hints to help
in resource mapping.

As usage models for virtualization con-
tinue to mature, we expect hypervisor
observation to be useful not only for
avoiding interference, but also for providing
accounting and billing and quality of service
assurance to VMs in a multicore system and
in clusters of multicore systems.

The ‘‘Related Work’’ sidebar sum-
marizes research on using OS observations
to improve performance in multicore sys-
tems.

Multicore systems have become in-
creasingly prevalent and increasingly

complex. Although techniques exist for
application tuning in a multicore environ-
ment, they cannot be optimized for every
possible multicore platform configuration
on which a user might run them. Moreover,
the dynamic nature of workloads that run
concurrently along with an application
causes runtime effects that influence appli-
cation performance differently for each
platform and workload configuration.

Our research shows that the OS can help
this problem by making dynamic observa-
tions of task behavior (without requiring
application involvement) and then imple-
menting smarter policies based on the
results of these observations. We believe
there is more fruitful work to be done in
this area. MICRO
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