Bridging Functional Heterogeneity in Multicore
Architectures

Dheeraj Reddy, David Koufaty, Paul Brett, Scott Hahn
{dheeraj.reddy,david.a.koufaty,paul.brett,scott.nahn} @intel.com
Intel Corporation

ABSTRACT

Heterogeneous processors that mix big high performance
cores with small low power cores promise excellent single—
threaded performance coupled with high multi-threaded
throughput and higher performance—per—watt. A significant
portion of the commercial multicore heterogeneous proces-
sors are likely to have a common instruction set architec-
ture(ISA). However, due to limited design resources and
goals, each core is likely to contain ISA extensions not yet
implemented in the other core. Therefore, such heteroge-
neous processors will have inherent functional asymmetry
at the ISA level and face significant software challenges.
This paper analyzes the software challenges to the operat-
ing system and the application layer software on a hetero-
geneous system with functional asymmetry, where the ISA
of the small and big cores overlaps. We look at the widely
deployed Intel® Architecture and propose solutions to the
software challenges that arise when a heterogeneous proces-
sor is designed around it. We broadly categorize functional
asymmetries into those that can be exposed to application
software and those that should be handled by system soft-
ware. While one can argue that new software written should
be heterogeneity—aware, it is important that we find ways in
which legacy software can extract the best performance from
heterogeneous multicore systems.

Categories and Subject Descriptors

D.4.1 [Operating Systems|: Process Management; C.1.3
[Processor Architectures|: Other Architecture Styles -
Heterogeneous (hybrid) systems

General Terms
Algorithms, Performance

Keywords
Functional Heterogeneity, Multicore, Shared Asymmetric
ISA, Intel® Architecture, Operating systems

1. INTRODUCTION

Advances in semiconductor technology have enabled pro-
cessor manufacturers to integrate more and more cores on a
chip. Most commercial multi-core processors consist of iden-
tical cores, where each core implements sophisticated micro-
architecture techniques, such as super-scalar and out—of—
order execution, to achieve high single-thread performance.
This approach can incur high energy costs as the number of
cores continues to grow. Alternatively, a processor can con-
tain many simple, low—power cores, possibly with in—order

21

execution. This approach, however, sacrifices single-thread
performance and benefits only applications with thread—
level parallelism.

A heterogeneous system integrates a mix of big and small
cores, and thus can potentially achieve the benefits of both [1,
7, 9, 15, 16, 27, 29]. Despite their significant benefits in
power and performance, heterogeneous architectures pose
significant challenges to operating system design [6], which
has traditionally assumed homogeneous hardware.

Heterogeneous architectures can be broadly classified into
two classes that are not mutually exclusive: functional asym-
metry and performance asymmetry. Functional asymmetry
refers to architectures where cores have different or over-
lapping instructions set architecture (ISA). For example,
some cores may be general-purpose while others perform
fixed functions such as encryption and decryption. Perfor-
mance asymmetry refers to architectures where cores dif-
fer in performance (and power) due to differences in micro-
architecture or frequency. Within the functional asymmetry
design space, two trends are likely to exist: the ISA might be
non—overlapping (such as the case of the Cell processor [24]
or hybrid CPU/GPU designs [22]) or the ISA might be over-
lapping.

We believe a significant portion of future commercial mul-
ticore heterogeneous processors are likely to have a com-
mon ISA. However, due to limited design resources or micro-
architectural goals, the big core is likely to contain ISA ex-
tensions not yet implemented in the small core. Therefore,
such heterogeneous processors will have inherent functional
asymmetry at the ISA level and face significant software
challenges. This paper analyzes the software challenges to
the operating system and the application layer software on a
heterogeneous system with functional asymmetry, where the
small core ISA overlaps with the big core ISA as in Figure 1-
(a) or one is a proper subset of the other as in Figure 1-(b).
We find that software has several options to leverage hetero-
geneity. However, each option is influenced greatly by the
design goals of a particular software stack.

Our paper is novel in several ways. First, previous work on
heterogeneous architectures has focused on the performance
advantages of designing performance asymmetric systems
assuming a homogeneous instruction set. This is very un-
likely since small processors stand to gain power /performance
advantages by sacrificing rarely used hardware or adding

Small core ISA

Big core ISA

(a) (b)

Figure 1: Overlap of instruction set architecture
(ISA). In (a) the two cores share a common ISA,
but each has special purpose features. In (b) one
core ISA is a proper subset of the other core.

hardware accelerators. Additionally, processor manufactur-
ers are constrained by their design resources and will try to
reuse existing core designs with their exiting ISA as much
as possible. Second, previous work on functional asymmetry
has been limited to kernel support for user-level ISA. To our
knowledge, ours is the first comprehensive analysis of the
diverse heterogeneity challenges faced by the operating sys-
tem, runtime and user space and a systematic methodology
to bridge the gap between the different ISA.

The rest of this paper is organized as follows. Section 2
describe the different design alternatives to support hetero-
geneity on each feature set. Section 3 enumerates the list
of most common functional gaps that need to be addressed,
either with software or a combination of software/hardware.
It also establishes a baseline of must have features across
architectures. Section 4 describes two hardware prototypes
used to implement some of the ideas presented. Section 5
discusses how to address some of the implicit assumptions
about homogeneity made by operating systems that break in
the presence of heterogeneous systems. Section 6 discusses
related work and Section 7 presents our conclusions.

2. DESIGN SPACE

Heterogeneous multicore architectures present new challenges

in designing both the hardware — operating system and op-
erating system— application interfaces: (1) how should the
operating system exploit the heterogeneity — are the het-
erogeneous capabilities of sufficient value that the operating
system should always use them (even if this requires mi-
grating execution to other core types), should the feature
be used opportunistically if available, or should the feature
be ignored completely? and (2) how should the operating
system expose the heterogeneity to applications — should
it present the illusion of a homogeneous system (either with
or without the heterogeneous feature) or should it expose
the heterogeneity, requiring applications to cope with the
resulting asymmetry?

These questions must be answered independently for each
heterogeneous feature, weighing the potential functional and
performance benefits with the added complexity in the oper-
ating system (which must manage the demand on resources
and provide sharing mechanisms, security etc) and applica-
tions. Choices are often constrained by hardware implemen-
tation issues which limit flexibility and existing operating

22

| Model | User Space View | OS Support
Restricted | Homogeneous De-featuring
Hybrid Heterogeneous Hetero-API extensions
Unified Homogeneous Feature unification

Figure 2: Overview of the solution space. The oper-
ating system must make choices of what features it
exploits and what features it exposes to user level.

system design choices which favor different software calling
conventions (system API, device driver, IOCTL etc).

In addressing these key questions, a number of common ar-
chitectural strategies have emerged each of which can be
applied independently to different features. Figure 2 lists
these solutions and their impact on the operating system
and user space. In the next sections, we examine each of
these approaches in detail.

2.1 The Restricted Model

The Restricted Model leverages our assumption that future
heterogeneous multi-core processors share a significant por-
tion of their ISA, sufficient to provide a complete execution
environment to system software. The restricted model tar-
gets software at a hypothetical core which implements only
this shared ISA.

An operating system which chose to use the restricted model
internally for the handling of a heterogeneous feature would
be implemented to utilize only the common ISA uniformly
provided on all the cores. Independent of this choice, an op-
erating system could choose to expose the restricted model
to higher level software by hiding (preventing enumeration),
disabling (preventing usage) or forbidding (by convention)
the asymmetric ISA features from higher level software.

Implementating the restricted model presents a number of
challenges:

e There must exist some useful, common subset of the
ISA on all cores in a system. Hence the restricted
model cannot be implemented where each core type
presents similar but incompatible implementations of
a feature.

e The common ISA features, which is specific to the com-
bination of both cores, must have been identified at
operating system design time, significantly increasing
the software enabling costs of any new heterogeneous
platform.

e The common subset of the ISA represents a new ar-
chitecture, similar to but independent from either of
the core architectures, onto which system software will
need to be ported and validated.

e System software will not be able to utilize the benefit
of the heterogeneous features of the platform, thereby
reducing the benefit gained by adding heterogeneity to
the platform.

e Additional hardware support may be required in the
platform to prevent the enumeration or usage of het-
erogeneous features which require OS support for con-
figuration, configuration or state management from
third party applications.

2.2 The Hybrid Model

In the cases where no common ISA exists, or the hetero-
geneity exposed by the platform provides sufficient benefit
to software, the operating system may choose to explicitly
implement and/or expose the asymmetry available in the
platform. The Hybrid Model requires potentially significant
software modifications to gain the benefits of the heteroge-
neous platform.

In the case where the operating system explicitly addresses
heterogeneity, the operating system can be divided into core
specific and core agnostic portions. Core specific code within
the operating system, for example interrupt handlers and
scheduler, will never migrate and hence can utilize dedicated
data structure and code paths to manage and benefit from
the heterogeneous features. Core agnostic code with the OS
is typically preemptable and can be migrated by the CPU
scheduler, and can be enabled using the same techniques as
heterogeneous aware applications.

Heterogeneous software must first interrogate the system to
establish the heterogeneity available in the platform, for ex-
ample by querying a new system database or testing each
of the available cores (Figure 3). The existing core affin-
ity capabilities presented by operating systems can then be
used to enable the application to adapt to the heteroge-
neous environment. However, heterogeneous applications
utilizing core affinity must balance the cost of using core
affinity with the benefit gained from the heterogeneous fea-
ture. Selectively executing code optimized for the current
processors (Figure 4) incurs a potentially significant system
call overhead to set and clear the affinity mask (measure-
ments on an Intel® Xeon® Processor E5450 processor run-
ning Linux 2.6.27 show this overhead can be as 5000 cycles).
This cost can be amortized over many instructions by forc-
ing the thread to remain on the big cores (Figure 5), at the
risk of overloading these cores with threads which cannot be
migrated.

Implementation of such modifications may require hetero-
geneous aware compilers, multi-path libraries, or "fat bina-
ries” containing multiple optimized versions of applications
requiring the developer to select independent algorithms op-
timized for the platform asymmetry.

This diversity in implementations creates a resource man-
agement issue for an operating system— applications which
are executing algorithms optimized for one type of core may
not be able to execute efficiently (or at all) on the other
cores. Heterogeneous applications can express these depen-
dencies using CPU affinity, but at the cost of limiting OS
load balancing — impacting the ability of the scheduler to
optimize system throughput.

2.3 The Unified Model
The Unified Model attempts to hide the resource manage-

ment issues of exposing heterogeneity by presenting the super—

23

// test_capability tests for SSE 4.1
int test_capability(void) {
unsigned int eax, ebx, ecx, edx;
eax = 1;
asm("cpuid" : "=a" (eax), "=b" (ebx),
"=c" (ecx), "=d" (edx)
: "0" (eax), "2" (ecx));
return (ecx & 1<<19);
}

cpu_set_t discovery() {

cpu_set_t current, capable;

int CPUS = sysconf (_SC_NPROCESSORS_CONF) ;
unsigned int eax,ebx,ecx,edx;

int i;

CPU_ZERO (&capable) ;
for (i=0;i<CPUS;i++) {

// set_affinity to cpu i
CPU_ZERO (¤t) ;
CPU_SET (i, ¤t);
if (!sched_setaffinity(O,
sizeof (cpu_set_t), ¤t)) {
// if the cpu has capability
if (test_capability()) {
CPU_SET(i, &capable);
}

Figure 3: Discovering SSE4.1 in a Linux application

cpu_set_t previous, current;

sched_getaffinity(O, sizeof(cpu_set_t), &previous);
// pin the task to the current core
CPU_ZERO (¤t) ;
CPU_SET (sched_getcpu(), ¤t);
if (!sched_setaffinity(O,
sizeof (cpu_set_t), ¤t) &&
test_capability()) {

// use SSE 4.1
} else {

// use alternate algorithm
}

sched_setaffinity(O, sizeof(cpu_set_t), &previous);

Figure 4: Linux application code to utilize SSE4.1
only if it is present on the current CPU

// early on in the code, we build maps of all and

// SSE4.1 capable processors

cpu_set_t default;

cpu_set_t capable = discovery();

sched_getaffinity(0, sizeof(cpu_set_t), &default);

// at each use of SSE4.1 instructions, we set the

// CPU mask, possibly forcing process migration
sched_setaffinity(0, sizeof(cpu_set_t), &capable);

// use SSE 4.1

// finally, restore default affinity to maximize

// throughput

sched_setaffinity(0, sizeof(cpu_set_t), &default);

Figure 5: Linux application code to utilize SSE4.1

instructions, forcing migration if required

set of capabilities of the cores to software.

Capabilities present in any of the cores in the architecture
are exposed to software as if they are present on all the cores
in the system, with the operating system providing trans-
parent services to ensure the correct functioning of software
which uses features not present on the current core.

When a process attempts to utilize a capability not present
on the current core, the core transfers control into the oper-
ating system fault handler. For example, software which ex-
ecutes an instruction on a core which does not support that
instruction generates an illegal instruction fault. Operating
systems designed for homogeneous systems will normally in-
terpret this fault condition as a fatal error and terminate the
process (for example Linux will deliver a SIGILL to the user
process). However, on a heterogeneous systems the fault
may have occurred because the process executed an instruc-
tion which is only present on some subset of the available
cores. With the unified model, the operating system can
use one of a number of strategies to continue execution of
the faulting process, namely, process migration, instruction
emulation and instruction proxying.

2.3.1 Process Migration

The operating system migrates the process to another core
type and re—executes the faulting instruction, on the as-
sumption that this core will support the missing capabil-
ity. Processes which fault at the same instruction address of
each core type are handled in the normal way for a homo-
geneous system. This approach was introduced in [18] and
it is referred as fault-and-migrate.

Process migration provides a simple mechanism to present
the unified model to software, however if many applications
attempt to use heterogeneous capabilities present on only
a few cores, process migration may the system to become
imbalanced. Using load balancing to migrate heterogeneous
processes back onto the other cores could result in excessive
process migrations, as processes bounce between cores. Fi-
nally, if the ISA of one core type is not a strict subset of the
other core type, it is possible for pathological applications
to bounce between cores as alternate instructions may force
migrations.

2.3.2 Instruction Emulation

As an alternative to migrating the faulting process, an op-
erating system could choose to emulate the faulting instruc-
tion. Early Intel® Architecture system included instructions
for floating point operations which were only present if an
8087 math coprocessor was installed in the system. operat-
ing system such as Linux provided an instruction emulator
for the 8087 for systems which did not include the hard-
ware. However, software emulation is significantly slower
than hardware not just because the dedicated hardware ac-
celerators are not present, but also because a fault and de-
code operation must be taken for each emulated instruction.
Hypervisors face a similar issue with emulation of privileged
instruction sequences, and have developed techniques to re-
duce (but not eliminate) the performance overhead. Xen [3]
uses the QEMU [5] emulator to decode streams of many in-
structions, reducing the number trips into the fault handler.

24

VMware [25] uses binary translation with aggressive caching
and pinhole optimization to achieve a similar result.

2.3.3 Instruction Proxying

Finally, the operating system could encapsulate the fault-
ing instruction in a lightweight execution context and pass
it to the other core type to be executed. Executing only
the faulting instruction on the other core type can allow
the process to gain the performance benefit of process mi-
gration with a reduced risk of over-committing the more
capable core types. However, encapsulating the faulting in-
structions context is complex and expensive. Each operation
will incur a significant performance penalty because of the
inter—core communication required, not just on the receiving
core which must perform the work but also on the sending
core since it will be difficult to schedule other work in the
short period in which it would be waiting for completion
of the instruction. For any instruction sequence involving
memory operations, the core will have to change memory
contexts to execute the instruction, impacting cached data.

2.3.4 Common Problems

Although the unified model provides a powerful tool for
legacy application support, each technique presents signif-
icant problems since they require that each core type must
generate an exception for every feature that it does imple-
ment. Features which presents a common interface but pro-
vides alternate definitions would therefore be problematic
to implement. Additionally, the techniques required to im-
plement the unified model introduce significant performance
overheads and both Process Migration or Instruction Proz-
ying add intercore dependencies which could result in faults
or deadlocks in performance critical sections such as fault
handlers and device drivers. Since operating system changes
to address platform heterogeneity would be required in order
to expose or exploit the unified model, we believe the benefit
to the operating system of the unified model is limited and
it is much more likely that a combination of the restricted
model and the hybrid model would be used for operating
system code.

3. FUNCTIONAL ASYMMETRY

Bridging the gap between instruction sets on heterogeneous
systems requires both hardware and software support, in-
cluding policies for the heterogeneous model in effect for
each asymmetric core feature. In this section, we will de-
scribe how various functional asymmetry issues affect the
operating system and give examples on Intel® Architecture
platforms. While this is not an exhaustive list, it showcases
some of the most common challenges to bring up the oper-
ating system components that depend on the hardware fea-
tures, including feature enumeration, memory models, and
instruction set.

3.1 Feature enumeration

Enumerating the features supported by each core and adopt-
ing a model to use and expose those features to applica-
tions is perhaps the most critical support needed for a true
heterogeneous—aware operating system. Two key issues need
to be addressed. As described in Section 2, the operating
system must decide what heterogeneous features it will sup-
port and which ones will be exposed to user space.

3.1.1 Core features

Traditionally, operating systems have been designed for ho-
mogeneous hardware and would check feature availability
by checking it in one processor and assuming it exists ev-
erywhere else. Examples of this are instruction subsets, ar-
chitectural registers and operating modes such as virtual-
ization. Feature enumeration must be fixed in one of three
ways. First, for features that will be supported only if they
exist in every core (the restricted model), the feature check
need to use a global set of common features instead of a
core—specific feature support. Second, for features that will
be supported asymmetrically (the hybrid model), most data
structures would need to be made per—core to guarantee only
support in the current core is checked. Moreover, initializa-
tion of such features made in one processor (for example,
the boot processor) will require awareness the feature avail-
ability in other cores. Finally, features that would be sup-
ported transparently regardless of hardware support (the
unified model) require an approach similar to the hybrid
model, with the addition of software and hardware support
described next.

3.1.2 Exposing features to user space

An operating system must decide what kind of asymmetry,
if any, it wants to expose to user space. This is important
because libraries and code that are not asymmetry—aware
could break. For example, if a library checks for the exis-
tence of a certain high performance feature that only exists
in a subset of the cores it could lead to lower performance
when the feature is checked in a core without it. Even worse,
if the feature is detected, but the thread is later migrated
to another core without it, it could lead to a fault. In sec-
tion 3.4 we discuss a potential solution for this issue.

It is not practical to predict what policies general purpose
operating system will support. For this reason, we propose
that hardware provide a mechanism to allow software to se-
lect which features will be exposed to user level on each
core. This could be implemented in hardware by intercept-
ing those instructions used for feature enumeration executed
in user space, similar to the techniques used in virtualiza-
tion [12]. In the Intel® Architecture, the CPUID instruction
is used for feature enumeration, so one alternative is is to
provide an exception when user code executes the CPUID
instruction and let the operating system generate the appro-
priate result for each feature in the fault handler. Figure 6
shows an example implementation. Using this mechanism
to implement a restricted or unified model, user code that
uses CPUID to detect features does not have to be modi-
fied, while the kernel code fault handler provides the set of
features that it wants to expose to user level. Alternatively,
hardware can provide overrides that allow the operating sys-
tem to selectively disable features that it does not want to
expose to user level, easing the implementation of The Re-
stricted Model.

The method above is generic enough to allow flexibility to
support many models. But any other methods that allows
the operating system to mask out the existence of a hardware
feature would suffice.

25

User code

Kernel code

// get core features

EAX = 1
CPUID

// detect feature

if (ECX & mask) then
// feature present

else
// feature not present

endif

// fault handler

if (EAX == 1) then
// exposed desired
// features

ECX = ...
else

CPUID
endif

// fix return address

IRET

Figure 6: Exposing a desired target instruction set
to user space.

3.1.3 Non—architectural features

Some cores provide features that are model-specific and
therefore non—architectural. Such features need to be ad-
dressed in software. For example, the address, bits and en-
coding of non-architectural model-specific registers in the
Intel® Architecture can vary across cores. Its use in the
kernel should be conditional of the core type where the ker-
nel is executing.

3.2 Memory and interrupt domains

One of the fundamental principles in which most traditional
operating systems rely on is the ability of all processors
to share a single physical memory address space and in-
terrupt domain. Although some non-traditional operating
systems [4] and clustering operating systems [2, 20| exists
that do not require a single domain across the system, they
still assume a single domain within each node.

A single memory domain requires the system to provide co-
herent access to all memory in the system to each core. A
single interrupt domain requires the system the ability to do
symmetric inter—processor communication.

Our work assumes that the hardware provides both. There-
fore, all memory in the system must be cache coherent and
shared. Similarly, internal or external interrupt controllers
must support addressing any core in the system. One of
the consequences of this is that processors that support the
advanced 22APIC architecture of Intel® Architecture pro-
cessors cannot be mixed with processors that only support
the incompatible zA PIC architecture, unless the z2APIC' is
only run in compatibility mode (i.e. zAPIC mode).

One consequence of the single memory domain is that if
the cores do not support the same physical address width,
the operating system is limited to use the lowest physical
address width of all the cores in the system for general pur-
pose memory management. The remaining physical memory
beyond this limit would be unused or dedicated to special
purposes.

3.3 Virtual memory and paging

There are many hardware features that control the opera-
tion of the virtual memory and paging subsystems in the
operating system. For the discussion convenience we sub-

divide them into three groups: page tables, paging cache
structures, and cache control.

3.3.1 Page tables

Page tables control the translation between virtual address
and physical address, with different paging modes associated
with differences in page size and attributes. The operating
system expects all processors to support the same paging
modes on all cores or, alternatively, it will use only the com-
mon paging modes across all cores. While there could be a
performance or functional advantage in using a paging mode
only available in certain cores (for example a large page size
or a no—execute bit), these page tables might be shared by
threads executing on different cores types and the cost of
remapping them out weights its benefits.

Given that the paging modes are the same and that all mem-
ory should be shared, it follows that the virtual address
space width should be the same across all cores.

3.3.2 Paging structure caches

The design of paging structure caches such as translation
lookaside buffers (T'LB) are not visible architecturally, there-
fore any differences on their sizes or associativity would
only have a performance impact and are irrelevant to the
functionality of the operating system. However, they might
have an impact on the design of the operating system sched-
uler [14].

Address space identifiers (ASID) are commonly used in many
architectures to allow selective flushing of TLB and im-
prove performance when switching VM contexts. Support
for ASID in all cores is optional, as the operating system can
either forgo ASID support completely or maintain ASID in
software and only use them in cores that support them.

3.3.3 Cache control

Cache control refers to all features that control the cacheabil-
ity of data, including memory types and cache line size.
Significant effort is made by the operating system and ap-
plication software to avoid cache line alignment issues and
minimize the amount of false sharing. Additionally, software
that depends on a certain cache line size to flush data out of
the cache (e.g. CLFLUSH) might not behave properly when
the cache line size varies across cores. For this reasons it is
recommended that the line size be the same across all cores.

The memory type can be controlled by different structures
in hardware. In the Intel® Architecture, memory type is de-
rived from a combination of memory type in the page tables
and the memory type range registers (M TRR). Software ex-
pects that the memory type resolution and visible behavior
of the resulting memory type be exactly the same across all
cores. Without it, software would invariably use additional
memory fences or stronger memory types to enforce the de-
sired behavior in hardware, leading to a loss of performance.

3.4 Instruction asymmetry

There are two types of instruction asymmetry relevant for
heterogeneous systems: the overlapping instructions that ex-
ists on all cores and the non—overlapping instructions that
only exists on a subset of cores.

26

3.4.1 Overlapping instructions

In order to simplify the programming mode, instructions
that exists in two or more cores must have identical en-
coding and result in identical state change. Otherwise, the
whole software stack including compilers, operating systems,
runtime and applications would be hampered by the non-
deterministic behavior of potentially each instruction. While
runtime checks for core-specific behavior can be done, they
are not a practical solution since it would have to be done
atomically before code path that uses instructions that are
not identical.

While guaranteeing identical encoding and results is straight
forward for integer arithmetic instructions, it might pose
more challenges to floating point arithmetic. We expect
cores to support the same precision and rounding modes.

3.4.2 Non—overlapping instructions

The instruction set exposed by each core is likely to differ
and result in each core type having specialized or advanced
instructions not implemented on other cores. While it is de-
sirable that user level code executes only instructions avail-
able in the core it is executing on, it might be difficult to
achieve this, particularly for legacy software. Indeed, exe-
cuting an instruction that does not exist in one core can be
transparently handled by the kernel by performing a fault
and migrate as described in Section 2.3.1. While this is not
generally desirable for high performance computing, it con-
stitutes as last line of defense for correct execution.

There are two types of instructions that might exists only
in some cores. The first type is those that operate on archi-
tectural state already present in every core. For example,
SSE4 instructions [11] operate on the same XMM registers
that previous SSE instructions do. In this case it is enough
to migrate the thread using the existing context switching
method. The second type consists of those instructions that
operate on new state only available on certain cores. This
new challenge requires changing the context switch code in
two ways:

e The save area on the task structure must be able to
accommodate all the state across cores.

e Context switching should only save and restore the
portions of the state that is relevant to the cores it is
operating on.

One example of how this can be done using high performance
context switching is depicted in figure 7. On the Intel® Ar-
chitecture, the XSAVFE instruction [11] allows saving of base
and extended architectural state. There are several possi-
bilities on how to implement this depending on the charac-
teristics of the extended states implemented on each core.
One approach would be for each core to be aware of the ar-
chitectural state implemented by the other cores and design
the save area format accordingly, as allowed by the defini-
tion of the save area. The operating system would set the
save masks appropriately to only save the state applicable
to each core. Another solution shown in figure 7 combines
one core with no extended state with one core with extended
state. Using the compatibility of the legacy save area, the

E Thread A | XSAVE FXRSTOR
—_

Big core

n
Thread A

Small core

FPU/SSE Area

Ext. Area header

Ext. Area 2

Ext. Area 3

Memory image

Figure 7: Mixing state save instruction with XSAVE
and FXSAVE.

core without extended state can use the older FXSAVE in-
struction, while the core with extended state can use the
newer XSAVE instruction.

Of course, as previously stated this is not a high perfor-
mance solution. It is desirable that code that is not asym-
metry aware be either restricted to the right core type or
limited to use the common instruction set. This will avoid
the performance impact from frequent migrations and the
unnecessary over subscription of certain core types.

In the case of kernel code, it should refrain from using in-
structions that are not available in the current core (using
conditional code) or simply use the common set of instruc-
tions across all cores. Support like fault and migrate is not
feasible in kernel mode for two reasons. First, certain code
paths that are non—preemptible cannot be transparently mi-
grated. For example, if the code assumes that the local core’s
runqueue is locked, this assumption would be broken if the
thread migrated. Second, even if the code is preemptible,
the faulting instruction might have been intended to change
the privileged state of the local core. Migrating it would
incorrectly made that state change on a different core. Fi-
nally, it is hard to envision a situation where the perfor-
mance benefits of using fault and migrate for kernel code
would outweigh the complexity of addressing the previous
issues.

3.5 System topology

Today’s systems include a variety of topologies that are han-
dled by the operating system. Examples of this are cache
hierarchies, memory subsystems and non—uniform memory
access (NUMA), core to socket mapping, and simultaneous
multithreading.

The operating system must address the potential of asym-
metric configurations. For example, the number of cores
per socket could be different on each socket, or the size and
number of sharers of a cache. This does not represent a
particular challenge since it is already likely the operating
system already using hierarchical data structures for this
purpose.

One notable aspect of how the operating system deals with
system topology is scheduling. When cache and memory
hierarchies differ, care must be take to create scheduling do-

27

mains that reflect the differences in cache topologies among
the cores and sockets. Similarly, scheduling optimizations
for simultaneous multithreading [23] should be only applied
to those cores that support it. Finally, scheduling optimiza-
tions can exploit the diversity in the workload to improve
system performance [26, 14].

3.6 Timing infrastructure

There are many platform counters that can be used for tim-
ing purposes. As long as they are globally shared in the
platform they do not represent a challenge in heterogeneous
systems. Modern processors such as those from the Intel®
Architecture family provide a high resolution counter called
the time stamp counter (7'SC) that is increment every clock
cycle. Since the clock cycle is the minimum unit of time, the
TSC provides the highest resolution counter available in the
platform. Additionally, the TSC can be read fast, usually
orders of magnitude faster than other platform counters.

In order to support the continued use of TSC for timing
purposes, hardware must provide guarantees that the TSC
is incremented at a constant rate across all cores on the
system. For heterogeneous systems this implies that it is
desirable to have the TSC increment at the same constant
frequency across all cores, regardless of the actual frequency
of the core. Moreover, the TSC should not be affected by
sleep or frequency events. Otherwise, the operating system
will not use TSC and obtain timing information from other
slower sources.

3.7 RAS and debug

Reliability, availability and serviceability (RAS) features are
often critical in certain market segments. As such, the re-
quirements on RAS features will likely be dictated by the
design goals of the CPU. While software does not require
the RAS features to be identical across cores, its usefulness
is limited by the lowest common feature set. Supporting
asymmetry on other features is possible, such as limiting
the propagation of certain errors, and could be enabled only
on cores that support it.

Debugging of heterogeneous systems extends well beyond
the operating system kernel. While the hardware infras-
tructure for debug is likely to offer some advanced features
in certain cores, it is expected that most basic functionality
will be common across all cores to enable debuggers. Debug-
gers and other tools will need to be updated to reflect the
asymmetry in the cores, particularly the non—common state
and decoding/disassembly of non—overlapping instructions.

3.8 Performance monitoring

Most modern CPU include some fundamental infrastructure
to collect performance counter that enable developers and
other users to understand the application behavior. Many
tools such as Intel® VTune rely on the existence of these
counters to debug applications.

There are two types of performance counters in the Intel®
Architecture. First, the architectural performance events
are those that behave consistently across microarchitectures.
Intel® Architecture implements several versions of architec-
tural events, and it would be desirable to all cores to sup-
port the same version. Second, non—architectural events are

those that are specific to the core. Due to the varying mi-
croarchitectures, non—architectural events would likely differ
significantly between the cores. All layers of the software
stack, including the kernel, would need to be aware of this
asymmetry. Tools such as VTune would need to be updated
and provide the user with proper interfaces to collect the
proper events on each core.

3.9 Virtualization

If the virtualization features are not identical across cores, a
VMM cannot effectively use those features. For example, it
is not worth the effort for a VMM to support two guest to
physical memory translation algorithms and data structures
simultaneously, say a page table shadowing and a guest to
physical page table, to be used conditionally on the presence
of support for extended page tables on the current core.

Therefore, the VMM is likely to use only the common set of
virtualization features. Yet, this by itself is complicated as
some virtualization architectures such as Intel’s VMX hide
the memory layout of the virtual machine control structure
(VMCS) from software. This format will change as new
virtualization features are added and new per—VM state is
saved in the VMCS, leading to the introduction of the VMCS
revision id. Hence, the format and revision id of the VMCS
might be different across cores, and one core would not load
a VMCS with a different revision id.

Two solutions are possible. The desired one is for hardware
to provide the same VMCS format and revision id, even if
some fields are deprecated in some cores due to unimple-
mented features. The other approach, much less desirable,
requires the VMM to do the translation during a VM migra-
tion across cores of different types. For example, the VMCS
can be saved to a format-independent memory region using
VMCS reads and saved in a new format using VMCS writes
on the new core. This process adds to the cost of a VM
migration, but could be mitigated by reducing the number
of such migrations, for example by creating processor pools
by core type.

3.10 Summary

Table 1 summarizes the discussion of the previous sections.
Adoption of heterogeneous systems will require hardware
and software co—development. Whilst the operating sys-
tem can support some degree of functional asymmetry, it
requires hardware to provide a basic subset of a common
ISA, including single memory and interrupt domains, iden-
tical memory types and identical behavior for common in-
structions. Software, on the other side, can bridge the gap
in functionality for certain classes of functional asymmetry,
including core feature set, topology and non—overlapping in-
structions. However, in order to fully exploit performance
of asymmetric systems both the operating system and the
user—level layer need to be aware of it, including libraries,
debuggers and performance monitoring tools.

In some cases, software is limited in the amount of asymme-
try that it can tolerate or exploit. For instance, asymmet-
ric paging modes or virtualization features, would require
the additional complexity of multiple kernel algorithms and
state migration between them, so it is unlikely that the op-
erating system itself would use these features. On the other

28

hard, applications can always deal with asymmetric features,
either by explicitly programming to the hybrid model or by
hiding the asymmetric features in the operating system us-
ing the restricted model or the unified model, the later par-
ticularly useful for legacy applications.

4. HARDWARE PROTOTYPES

To identify and further investigate the operating system is-
sues that might occur in a heterogeneous systems, we exper-
imented with two hardware platforms. The first prototype
consisted of processors from different microarchitecture fam-
ilies in a single system. The second prototype uses identi-
cal processors but with certain features disabled in selected
cores.

4.1 Multi-family platform
This platform consists of a dual socket system featuring pro-
cessors from different processor families, a dual-core Intel®

Atom " Processor N330 and a quad-core Intel® Xeon®
Processor E5450. This platform thus gives us a pairing of a
set of high performance big cores (E5450) with a set of power
efficient small cores (N330). The small cores are an order of
magnitude more power efficient than the big cores but have
significantly less performance to that of the big cores. We
verified the raw integer performance difference between the
cores using a set of microbenchmarks. While these big cores
do not support any form of SMT, the small cores are two-way
SMT cores. This asymmetric core prototype has significant
architectural, topological as well as performance asymme-
try. These systems have a modified firmware that supports
the different core types. These platforms also have been
modified such that an N330 core is always the bootstrap
processor (BSP). We disabled the use of TSC as a clock-
source since the two processors were running at different
clock frequency. Thus, the HPET was the only clocksource
in our operating system. This makes sure that the core with
a smaller feature-set is always the smaller core. Though
there is no such requirement for a heterogeneous system, it
makes our platform bring—up process relatively easy. Our
modified Linux kernels and the software stack above could
run various performance-oriented algorithms previously pro-
posed [17, 14] for a performance asymmetric heterogeneous
systems.

4.2 Defeatured platform

The second platform consists of a system featuring the 2011
274 Generation Intel® Core® Processor codenamed “Sandy
Bridge”. These cores come with the Intel Advanced Vector
Extensions (AVX), a new 256-bit SIMD instruction set that
accelerates floating point intensive applications. The AVX
instructions depend on the presence of the XSAVE/XRSTR
instructions to save and restore the extended AVX state. Us-
ing proprietary tools, we disabled the XSAVE/XRSTR and,
therefore, AVX instructions in a subset of the cores that we
designate as small cores. This provides for an architectural
asymmetry in the the heterogeneous platform but almost no
performance asymmetry. Applications which take advantage
of the newer AVX instructions will be able to run only on
the big cores. They will experience illegal-instruction ex-
ceptions if they run on the small cores. To overcome this
heterogeneity, we resorted to The unified model as discussed
in Section 2.3. We created the floating point state for all the

| Topic | Subtopic | Hardware | Software
Domains Memory Same
Interrupt Same
Features Core features Expose to SW Manage
User space features Add HW support Policy
Memory Page tables The Restricted Model
Physical address The Restricted Model
ASID The Restricted Model
Memory types Same
Cache line size Same
Paging caches Transparent
Instructions Overlapping Same
Non-overlapping Policy & manage
Topology Cache, NUMA, SMT Manage
Timing TSC frequency Same desirable Use if same
RAS The Restricted Model, others optional
Debug Basic features same | Impact to tools
Performance monitoring | Architectural Same
Non—architectural Manage in tools
Virtualization Features The Restricted Model
Revision id Same desirable Manage

Table 1: Summary of hardware and software requirements, details are given in the respective sections. Blank
entries mean that there are no requirements, while The Restricted Model refers to support only for the
subset of the feature[s] common to all cores in the system.

processes corresponding to the big core feature set. Thus,
each process will have floating point state which assumes
that it will run on the big core. Obviously, when the pro-
cess runs on the small core, the floating point instructions
operate on a subset of this state. AVX instructions on the
other hand, operate on the complete state. To verify that
our architectural hypothesis is indeed reflected in software
behavior, we hand—crafted a few sample applications which
use AVX instructions that exhibited the fault-and-migrate
behavior and could exploit the heterogeneity using the tech-
niques mentioned in Sections 2.2 and 2.3. We also verified
that migrating legacy applications (SPEC 2006 benchmarks)
across the cores of this heterogeneous systems does not re-
sult in any functional deviation or incorrect results.

5. OVERCOMING HOMOGENEITY

System software running on current multicore architectures
make several implicit assumptions about the homogeneous
nature of the platform. In many cases, these assumptions
prevent the basic bootstrapping of the operating system it-
self on heterogeneous systems. However, a larger problem
occurs when core algorithms such as those that govern re-
source allocation assume homogeneity. This results in silent
suboptimal behavior of the system and in many cases, out-
right incorrect behavior. In this section we describe sev-
eral such assumptions that we encountered while running
modern operating system stacks on the two custom hetero-
geneous systems that were described in Section 4. Even
though we focus the discussion mostly on the Linux® oper-
ating system, we believe that most of these issues are also
present in other operating systems. For example, our anal-
ysis of the FreeBSD® software stack reveals that the issues
we discuss below also apply to it.

29

5.1 CPU feature flags

Early in the boot process, the Linux kernel discovers the fea-
tures that an CPU supports. However, there is only one such
persistent data—structure that stores the flags of the boot-
strap processor (BSP). These capability bits are then logi-
cally ANDed with the features that are discovered when the
application processors (AP) are enumerated. Subsequently,
whenever the kernel software needs to check for a partic-
ular feature flag, it refers to these common capability bits.
While this ensures that software that assumes homogeneity
will work in the kernel, it was designed to overcome minor
differences in processor steppings and only supports a The
Restricted Model kernel, thus sacrificing the advantages that
the big cores may potentially provide.

On user space, most application software written to take
advantage of advanced processor features depends on native
instructions (such as CPUID) to discover processor features.
While this is not a problem on homogeneous systems, when
the operating system chooses to present a The Hybrid Model
to user space, it can cause software to underutilize the sys-
tem or generate exceptions. While solutions like fault and
migrate (Section 2.3.1) handle these issues as a last resort
method, feature detection on heterogeneous systems should
be rewritten to detect per-cpu features using either native
methods or new software interfaces that the application layer
can count on.

5.2 Runtime code patching

One of the ways in which the Linux kernel takes advantage
of the variations and improvements in hardware is by means
of the “alternatives” mechanism. This allows the kernel to
optimize itself at boot—time when it exactly knows what
platform it is running on. During build—time, the kernel
stores two (or more) implementations of a given function-

Schedulingydomains

NUMA Node

Package

Core

Logical processor
Each box

Figure 8: Scheduler domains in Linux.
represents one scheduler domain.

ality. Only the baseline implementation is included in the
initial loadable kernel image, targeting the ISA supported by
all the processors in a family. For example, the floating point
state saving and restoring code will target the ISA supported
by the Pentium processor in Intel® Architecture. The al-
ternate implementations are stored in a special ELF section.
After discovering the platform at boot time, the kernel walks
through this special ELF section and the alternative imple-
mentations are patched into the kernel image. After the
patching process is finished, the running kernel image be-
haves as it it has been configured/compiled for the exact
platform it is running on. Examples of such patching in the
Linux kernel include memory barriers, saving and restoring
the floating point state, SMP primitives, and prefetch hints.

In the context of heterogeneous systems, this runtime patch-
ing mechanism may not work. The above described method
of patching works because the alternatives mechanism as-
sumes that the platform is homogeneous. This is an example
of the optimizations that need to be redesigned in the con-
text of heterogeneity. One crude method that we have im-
plemented is by replacing the alternatives mechanism with
real alternative code paths in the kernel image that check
for the presence of the specific features. However, other op-
timizations in this area are possible.

The run—time code patching feature is specific to Linux and
the BSD family of operating systems do not seem to have a
similar feature.

5.3 System topology

Load balancing in multiprocessor systems depend on the
accurate discovery of the system topology. In Linux, the
complete system topology is divided into an elegant tree of
scheduling domains which may share various parts of the
architecture to a smaller or larger degree. An example of
a scheduling domain is a group of cores that share the last
level cache. An illustration of these domains can be seen in
Figure 8. The load balancing code starts at the lowest level
in which each domain is a logical processor and then moves
up the system topology identifying imbalances in each do-
main. If it finds an imbalance, it attempts to rectify it. This
algorithm assumes that the topology is balanced or symmet-
ric. However, in case of asymmetric core architectures, there
is no guarantee that the system topology will be balanced.

One illustration of a scheduling domain asymmetric topol-
ogy is shown in Figure 9. In such a topology, as we reach the
system topology nodes which are not balanced themselves,

30

Schedulin %Vdomains

O)

NUMA Node

Package @

00 [09)|@0) (CJ0 Do) |@0 O

Logical processor

Figure 9: Scheduler domains in asymmetric topolo-
gies. Load balancing needs to account for differences
in topology and compute power.

the balancing acts at the Numa node domain will result in
an imbalanced system, because the child domains, which are
the Packages have different numbers of logical processors in
them. One way to mitigate this is to quantitatively take
into account the compute power of a scheduler domain itself.
This will allow us to balance across asymmetric topologies
because their asymmetries will be masked by the compute
power factor.

5.4 System timekeeping

Linux uses the timestamp counter (TSC) for fine-grained
time keeping. Coarse—grained time keeping can be done
using a variety of timer options available on the platform.
However, the TSC runs at the frequency of the processor
clock. Linux calibrates the TSC using a known external
timer once on the BSP and assumes that it is the same for
all the APs. In a heterogeneous systems it is easy to see
that we may have cores that run at different frequencies.
This introduces a small error every time we do the standard
time measurement which then builds cumulatively. Over
time (which can be fairly small in wall clock terms) it can
become a source of significant error in idle events and fine
grained timing related tasks such as those in the file sys-
tem which depend on gtod. As discussed in Section 3.6, the
lack of a fixed rate TSC in the E5450/N330 prototype leads
to unreliable timing, so our system uses a core-independent
timer source (the HPET) for timing purposes.

5.5 Trampoline code

The bootstrap process in a typical multiprocessor requires
that the BSP send an inter—processor interrupt to each AP
along with a vector. The vector address is the address of the
trampoline code. The Linux kernel assumes that this tram-
poline code is the same for all the processors, which could
break in the presence of heterogeneity. In the current proces-
sor architectures, the trampoline code more or less handles
all the processors in a single processor family. However, it
is conceivable that if there are cores with different microar-
chitecture and feature sets that differ slightly in their initial
bootstrap process, the bootstrap code need to be custom for
the different processors. This aspect of heterogeneity did not
have an impact in any of our prototypes.

5.6 Power efficient idling

Since the processor cores can be in an idle state for signifi-
cant amount of time, idle state management is a fairly im-
portant job of the Linux kernel. The cpuidle driver handles

the idle-state management in the Linux kernel. The device
driver developers can provide hints to the idle management
subsystem about the tolerable latencies in a given device
state. The cpuidle driver ensures that there is only one idle
loop algorithm for all the cores in the system. However, each
of the cores can be in a different state at any given point of
time. The idle states are initialized only once for the BSP
and it is assumed that the same hold true for all the cores.
On one of our hardware prototypes the Linux kernel used
only the C1 state idle handling using the MWAIT instruc-
tion. Ideally, one would expect that the operating system
would use per—cpu idle loops that are optimized for a given
core architecture for maximal power savings and appropri-
ate entry and exit latencies. For a heterogeneous systems,
Linux should have a cpuidle driver per—cpu which could be
different and uses the C—states that are specific to the core.

5.7 Dynamic voltage and frequency scaling
Modern processors support a wide range of operating sys-
tem visible dynamic voltage and frequency scaling (DVFS)
states. DVFS allows for a nice method to save battery
power as lower clock speeds (at low voltages) mean lower
power consumption. One can think of various governors
that can act on different cores at different times in hetero-
geneous systems. As in the case of the cpuidle behavior, the
Linux kernel has a single driver that provides the mecha-
nism for driving the various cores in the platform to different
P-states (The ACPI term for various performance/DVES
states). During initialization, this driver populates the var-
ious P—states that the core that it ran on is capable of tran-
sitioning to. This information is copied into all the per—cpu
information nodes. On a heterogeneous system this is not
a correct assumption because all the cores may have dif-
ferent sets of possible P-states. Thus, we need a per core
type mechanism (or more generally a per—core) mechanism
to drive the individual cores to different P—states as is ap-
propriately chosen by a myriad of governing policies.

5.8 Machine check architecture

Intel® Architecture processors implement a mechanism that
can detect and report hardware errors called the Machine
Check Architecture (MCA). To this extent they consist of
several error-reporting register banks. Each bank is asso-
ciated with one or more hardware units. Our E5450/N330
hardware prototype consisted of cores that supported dif-
ferent numbers of MCA banks. The Linux kernel assumes
that the banks discovered in the BSP are applicable to all
the APs. In fact, it forces the number of banks to be the
same. The actual meaning of the error codes reported is
likely to be different for different cores in a heterogeneous
system. Thus, the identification of the MCA and the subse-
quent hooking up of the error decoding notifier chain should
be made core type specific in heterogeneous systems.

5.9 Non-architectural features

The Linux kernel sometimes uses the non—architectural fea-
tures such as model-specific registers (MSR). While use of
such features in a homogeneous system will not create any
problems, in case of heterogeneous systems, such features al-
ways need to be conditional on the individual core type. One
example of such a use is the last branch record (LBR) fea-
ture in the perf subsystem. When these registers need to be

31

reset, the addresses of these registers are model—specific, and
differ between the E5450 and N330 processors. The Linux
kernel, assumes that the registers are same, thus resulting
in machines crashing in strange ways.

Operating systems have generalized certain properties of the
cores (such as the C-states as well as P-states) as plat-
form devices. Since, in the case of homogeneous systems the
mechanism and the possible states of the cores are identical,
this approximation holds. However, in case of heterogeneous
systems, the possible states as well as the mechanism to
change state differs, these devices need to be per—core with
distinct properties in terms of states as well as mechanisms.
In many cases, the assumption on homogeneity is built-in
in the many data structures the kernel handles. While we
cover some specific examples in the previous sections, more
generically the kernel needs to assure that any data struc-
ture that is CPU specific is made per-CPU. For example,
in the case of our E5450/N330 system, the N330 processor
features simultaneous multithreading while the E5450 does
not. In Linux, a single variable accounts for the number of
hardware threads that a single core supports, leading to in-
correct construction of the scheduler domains hierarchy in
this system.

6. RELATED WORK

Prior work has demonstrated the benefits of single ISA het-
erogeneous architectures in achieving improved performance
per watt. Kumar et al. [15, 16] demonstrated the perfor-
mance benefits of single ISA heterogeneous architectures.
Annavaram et al. [1] varied the amount of energy expended
to process instructions according to the amount of avail-
able parallelism. Ghiasi et al. [7] demonstrated improved
efficiency by using application characteristics to control dy-
namic voltage and frequency scaling. Hill and Marty [10]
show that asymmetric multi-core designs provide greater po-
tential speedup than symmetric designs.

Knauerhase et al. [13] demonstrated the benefits of dynamic

runtime observation in the operating system to optimize per-

formance on heterogeneous architectures. Koufaty et al. [14]

added bias scheduling for heterogeneous systems to match

threads to the core type that can maximize system through-

put, based on dynamically matching workload characteris-

tics to core microarchitecture. Shelepov and Fedorova [28]

proposed Heterogeneity-Aware Signature-Supported schedul-
ing using per-thread architectural signatures to avoid the

need for dynamic profiling.

The majority of prior research assumes either single or dis-
joint ISAs. Our work lies in between and considers overlap-
ping ISAs, which we believe is more practical. For disjoint
ISAs, most manage the “different” cores as coprocessors or
peripherals and incur high overhead when moving contexts
across address spaces. CUDA® exposes graphics processors
as a coprocessor through libraries and OS drivers [22]. Cell®
offloads predefined code blocks to Synergistic Processor El-
ements [8] and EXOCHTI offloads to a graphics processor via
libraries and compiler extensions [29]. These designs place
great burden on programmers, whereas we allow the operat-
ing system to transparently manage all cores as traditional
CPUs.

Li et al. [19] presented a comprehensive study of OS support
for heterogeneous architectures in which cores have asym-
metric performance and overlapping, but non-identical in-
struction sets, enabling transparent execution and fair shar-
ing of different types of cores. We complement this work
by presenting the detailed analysis of a real heterogeneous
platform.

MISP [9, 29] employs proxy execution similar to fault-and-
migrate. However, it requires hardware support for user-
level faults and inter-processor communication. Hypervisors
such as Xen [3] and VMware [25] use fault and emulate tech-
niques to implement instructions not supported by hardware
vitalization features.

Existing operating systems which expose heterogeneity gen-
erally avoid resource management issues by having secondary
schedulers for the heterogeneous resources, accessed via a de-
vice driver model. Probably the most prevalent example of
this is the usage of device drivers for graphics cards which
hide domain specific compute engines.

In the research community, Helios [21] introduces satellite
kernels to export a single, uniform set of OS abstractions
across heterogeneous systems, retargeting applications to
available ISAs by compiling applications to an intermediate
language. Barrelfish [4] takes a distributed system approach
to hide CPU asymmetry behind ’cpu drivers’, exposing CPU
capabilities directly to applications which must adapt based
upon the dynamic view of the system held in a system knowl-
edge base.

7. CONCLUSIONS

In this paper, we analyze various methods that can be used
to bridge the functional issues that arise in a heterogeneous
systems which has processor cores from different microar-
chitecture families. We explore the design choices that are
available for software designers and discuss the pros and cons
of each. We find that the software stack including operat-
ing systems and applications will need to adapt to exploit
the heterogeneous nature of the underlying platform. We
have prototyped some of our software modifications in two
hardware prototypes of heterogeneous systems. We conclude
that such modifications will provide for the smooth adop-
tion of heterogeneous systems into the computing realm in
a backward compatible manner. Even as we enumerate the
software choices to overcome heterogeneity, there is no once
choice that suits all software stacks. The design goals of
individual software stacks will certainly influence the way
in which they approach heterogeneity. Although our study
and experience have a number of limitations, our findings
can influence the direction in which operating system evolve
as well as hardware design choices. By way of hardware and
software prototypes, we identify several assumptions about
homogeneity that the current operating systems make. Fur-
ther, our experience with the hardware prototyping empha-
sizes that a symbiotic evolution of hardware and software
is necessary for this category of heterogeneous systems to
fulfill its potential.

8. REFERENCES
[1] M. Annavaram, E. Grochowski, and J. Shen.
Mitigating Amdahl’s law through EPI throttling. In

32

(14]

(15]

Proceedings of the 32nd Annual International
Symposium on Computer Architecture, pages 298-309,
June 2005.

A. Barak and O. La’adan. The mosix multicomputer
operating system for high performance computing. In
Future Generation Computer Systems, 1998.

P. Barham, B. Dragovic, K. Fraser, S. Hand,

T. Harris, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield. Xen and the art of virtualization. In
Proceedings of the 19th ACM Symposium on Operating
System Principles, New York, NY, USA, Oct. 2003.
ACM.

A. Baumann, P. Barham, P.-E. Dagand, T. Harris,

R. Isaacs, S. Peter, T. Roscoe, A. Schiipbach, and

A. Singhania. The multikernel: A new os architecture
for scalable multicore systems. In Proceedings of the
22nd ACM Symposium on Operating System
Principles, pages 29-44, New York, NY, USA, Oct.
2009. ACM.

F. Bellard. Qemu, a fast and portable dynamic
translator. In Proceedings of the 2005 USENIX
Annual Technical Conference, Apr. 2005.

F. A. Bower, D. J. Sorin, and L. P. Cox. The impact
of dynamically heterogeneous multicore processors on
thread scheduling. IEEE Micro, 28(3):17-25, May/Jun
2008.

S. Ghiasi, T. Keller, and F. Rawson. Scheduling for
heterogeneous processors in server systems. In
Proceedings of the 2nd Conference on Computing
Frontiers, pages 199-210, May 2005.

M. Gschwind. The Cell” broadband engine: Exploiting
multiple levels of parallelism in a chip multiprocessor.
International Journal of Parallel Programming, 35(3),
June 2007.

R. A. Hankins, G. N. Chinya, J. D. Collins, P. H.
Wang, R. Rakvic, H. Wang, and J. P. Shen. Multiple
instruction stream processor. In Proceedings of the
33rd Annual International Symposium on Computer
Architecture, pages 114-127, June 2006.

M. Hill and M. Marty. Amdahl’s law in the multicore
era. [EEE Computer, 41(7):33-38, July 2008.

Intel Corporation. Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2: Instruction
Set Reference. Intel Corporation, June 2009.

Intel Corporation. Intel® Virtualization Technology
FlexMigration Application Note 323850.
http://www.intel.com/Assets/PDF /manual /323850.pdf,
May 2010.

R. Knauerhase, P. Brett, B. Hohlt, T. Li, and

S. Hahn. Using OS observations to improve
performance in multi-core systems. IEEFE Micro,
28(3):54-66, May 2008.

D. Koufaty, D. Reddy, and S. Hahn. Bias scheduling in
heterogeneous multi-core architectures. In Proceedings
of the Fifth European conference on Computer
Systems, New York, NY, USA, Apr. 2010. ACM.

R. Kumar, K. I. Farkas, N. P. Jouppi,

P. Ranganathan, and D. M. Tullsen. Single-ISA
heterogeneous multi-core architectures: The potential
for processor power reduction. In Proceedings of the
36th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 81-92, Dec. 2003.

[16]

[19]

[20]

[21]

23

[24]

R. Kumar, D. M. Tullsen, P. Ranganathan, N. P.
Jouppi, and K. I. Farkas. Single-ISA heterogeneous
multi-core architectures for multithreaded workload
performance. In Proceedings of the 31st Annual
International Symposium on Computer Architecture,
pages 64-75, June 2004.

T. Li, D. Baumberger, D. Koufaty, and S. Hahn.
Efficient operating system scheduling for
performance-asymmetric multi-core architectures. In
Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing, Nov. 2007.

T. Li, P. Brett, B. Hohlt, R. Knauerhase, S. D.
McElderry, and S. Hahn. Operating system support
for shared-isa asymmetric multi-core architectures. In
Proceedings of the Fifth Annual Workshop on the
Interaction between Operating Systems and Computer
Architecture, June 2009.

T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy,
and S. Hahn. Operating system support for
overlapping-isa heterogeneous multi-core architectures.
In Proceedings of the Sixzteenth International
Symposium on High-Performance Computer
Architecture, Jan. 2010.

C. Morin, R. Lottiaux, G. VallAle, P. Gallard,

G. Utard, R. Badrinath, and L. Rilling. Kerrighed: a
single system image cluster operat-ing system for high
performance computing. In Proceedings of the 9th
International Furo-Par Conference, Aug. 2003.

E. B. Nightingale, O. Hodson, R. Mcllroy,

C. Hawblitzel, and G. Hunt. Helios: heterogeneous
multiprocessing with satellite kernels. In Proceedings
of the 22nd ACM Symposium on Operating System
Principles, pages 221-234, New York, NY, USA, Oct.
2009. ACM.

NVIDIA. NVIDIA CUDA Programming Guide,
Version 1.1. NVIDIA Corporation, Nov. 2007.

S. Parekh, S. Eggers, H. Levy, and J. Lo.
Thread-sensitive schedling for smt processors. 2000.
D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P.
Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty,
Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak,

M. Suzuoki, M. Wang, J. Warnock, S. Weitzel,

D. Wendel, T. Yamazaki, and K. Yazawa. The design
and implementation of a first generation CELL
processor. In IEEE International Solid-State Circuits
Conference Digest of Technical Papers, pages 184—185,
Feb. 2005.

M. Rosenblum and T. Garfinkel. Virtual machine
monitors: Current technology and future trends. In
Computer, volume 38, pages 39-47, May 2005.

J. C. Saez, M. Prieto, A. Fedorova, and S. Blagodurov.
A comprehensive scheduler for asymmetric multicore
systems. In Proceedings of the Fifth European
conference on Computer Systems, pages 139-152, New
York, NY, USA, Apr. 2010. ACM.

S. Saisanthosh Balakrishnan, R. Rajwar, M. Upton,
and K. Lai. The impact of performance asymmetry in
emerging multicore architectures. In Proceedings of the
32nd Annual International Symposium on Computer
Architecture, pages 506517, June 2005.

D. Shelepov and A. Fedorova. Scheduling on
heterogeneous multicore processors using architectural

33

29]

signatures. In Proceedings of the Fourth Annual
Workshop on the Interaction between Operating
Systems and Computer Architecture, June 2008.

P. H. Wang, J. D. Collins, G. N. Chinya, H. Jiang,
X. Tian, M. Girkar, N. Y. Yang, G.-Y. Lueh, and
H. Wang. EXOCHI: Architecture and programming
environment for a heterogeneous multi-core
multithreaded system. In Proceedings of the ACM
SIGPLAN 2007 Conference on Programming
Language Design and Implementation, pages 156-166,
June 2007.

