
 1

 
Abstract— The number of cores integrated onto a single die is 

expected to climb steadily in the foreseeable future.  This move to 
many-core chips is driven by a need to optimize performance per 
watt.  How best to connect these cores and how to program the 
resulting many-core processor, however, is an open research 
question.  Designs vary from GPUs to cache-coherent shared 
memory multiprocessors to pure distributed memory chips.   The 
48-core SCC processor reported in this paper is an intermediate 
case, sharing traits of message passing and shared memory 
architectures.   The hardware has been described elsewhere.  In 
this paper, we describe the programmer’s view of this chip.  In 
particular we describe RCCE: the native message passing model 
created for the SCC processor. 
 

Index Terms—many-core processors, message passing APIs, 
non-cache-coherent shared memory.   

I. INTRODUCTION 

The many-core transition is well underway. To optimize 
performance per watt, the number of cores per processor will 
inevitably increase over time.  The key questions are how to 
connect the cores on a die, and how to program them.   

An evolutionary approach based on familiar multiprocessor 
designs is attractive.  A significant legacy of multi-threaded 
software for cache coherent shared address spaces exists, 
making such designs a natural choice.  These designs depend 
on cache coherence protocols that keep the view of memory 
coherent across the cores.  The protocol overhead per core 
grows with the number of cores, leading to a “coherency wall” 
beyond which the overhead exceeds the value of adding cores 
[1].  The impact of this wall can be delayed using clever 
caching schemes, but eventually the overhead associated with 
cache coherence will limit scalability for important workloads. 

An alternative approach is to avoid cache coherence 
between cores altogether, with cores interacting by 
exchanging messages or through non-cache-coherent shared 
memory.  Exploring these inherently scalable designs is a key 
aspect of the TeraScale Research program at Intel.  The first 
processor in this program was the 80-core TeraScale processor 
[2].  The goal for the 80-core processor was to explore tiled 
architectures, 2D on-die meshes, and other issues pertaining to 
the circuits used on the chip.  The 80 core chip featured a tiny, 
non-IA instruction set and had no compiler, no external 

 
Manuscript received April 12, 2010.  
Authors work at Intel Corporation.  Corresponding author, T. G. Mattson, 

2800 Center Drive, DuPont WA, 98327, phone: 253-228-4758, email: 
timothy.g.mattson@intel.com.  

 

memory, no I/O, and no operating system.  Consequently, 
programming this chip was a difficult process that only a few 
programmers accomplished [3].   

In this paper, we report on the second processor in the 
TeraScale Research program, the 48-core SCC processor [4].  
Once again, this processor explores a scalable many-core 
architecture that does not use a cache-coherent shared address 
space.  Unlike the 80-core processor, however, SCC uses a 
mainstream x86 instruction set.  The Linux operating system 
is available, as well as C, C++, and Fortran compilers.  An 
NFS file system can be mounted on the chip, allowing a full 
range of I/O operations.  In other words, while the 80-core 
chip was a hardware experiment with software added later, the 
48-core SCC processor is a true hardware/software co-design 
that can support a wide variety of software research projects.  

We believe that it is important to document research 
processors during this historic period of transition to many-
core computing. The SCC hardware was described elsewhere 
[4]. In this paper, we focus on the programmer’s perspective. 
We begin with a brief overview of the SCC architecture and 
the software platform provided with the chip.  Then we 
explore the memory subsystem provided by SCC, describe the 
message passing API (known as RCCE) designed for the SCC 
processor, and present benchmark results.  We close with a 
look at the lessons we have learned and future plans for 
software research with the SCC processor.   

II. SCC HARDWARE 

The SCC chip is a many-core CPU consisting of 24 dual-
IA-core tiles connected by a 2D-grid on-die network. The 
physical features of the chip are:   

- 45 nm high K CMOS technology, 1.3 billion transistors. 

- Tile area 18 mm2, die area 567 mm2. 

- Power for the full chip ranges from 25 to 125 watts. 
 25W at 0.7v, 125MHz core, 250MHz mesh and 50°C 
 125W at 1.14V, 1GHz core, 2GHz mesh and 50°C 

- Power for the on-die network 
 6 W for a 1.5 Tb/s bisection bandwidth 
 12 W for a 2 Tb/s bisection bandwidth 

The features of the chip essential to programmers are 
summarized in figure 1.  The tiles are organized in a 6 by 4 
mesh with each tile containing: 

- Two blocks, each with a P54C core, 16 KB instruction 
and data L1 caches plus a unified 256 KB L2 cache. 

The 48-core SCC processor: the programmer’s 
view 

Timothy G. Mattson, Rob F. Van der Wijngaart, Michael Riepen, Thomas Lehnig, Paul Brett, 
Werner Haas, Patrick Kennedy, Jason Howard, Sriram Vangal, Nitin Borkar, Greg Ruhl, 

Saurabh Dighe 

© 2010 IEEE Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional 
purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work 
in other works must be obtained from the IEEE. SC10 November 2010, New Orleans, Louisiana, USA 978-1-4244-7558-2/10/$26.00



 2

- A Mesh Interface Unit (MIU) with circuitry to allow the 
mesh and the interface to run at different frequencies. 

- A 16 KB Message Passing Buffer. 

- Two test-and-set registers. 
 

The SCC processor’s P54C cores are second generation 
Pentium® processors [5].  These are small in-order cores 
available as RTL that can be fully synthesized for layout onto 
the chip. In essence, the major research questions pertain to 
ways to connect large numbers of x86 cores and how this 
architecture interacts with and enables application software.  
To answer these questions the absolute performance of the 
cores is not important so we opted for a well known core that 
we could place on a tile with minimal effort. 

Each tile connects to a router.  This router works with the 
Mesh Interface Unit (MIU) to integrate the tiles into a mesh.  
The MIU packetizes data onto the mesh and de-packetizes 
data from the mesh using a round-robin scheme to arbitrate 
between the two cores on the tile.  The MIU catches cache 
misses and decodes the 32-bit memory addresses from the 
core into a system address to access up to 64 GB of memory.  
This is managed through a lookup table (LUT) on each core to 
define how addresses are mapped onto system addresses.   We 
discuss the LUT and the translation process in the next 
section.  

To move data off chip, the SCC chip includes four DDR3 
memory controllers.  In addition, a router is connected to an 
off-package FPGA to translate the mesh protocol into the PCI 
express protocol, allowing the chip to interact with a PC 
serving as a management console.  

The SCC chip includes instructions that let programmers 
control voltage and frequency.  There are 8 voltage domains 
on a chip: one for the memory controllers, one for the mesh, 

and 6 to control voltage for the tiles (at the granularity of 4-
tile blocks).  Frequency is controllable at the granularity of an 
individual tile, with a separate setting for the mesh; providing 
a total of 25 distinct frequency domains. Additional details 
about SCC voltage and frequency control can be found in [4]. 

III. SCC MEMORY ARCHITECTURE 

The SCC processor is more than a distributed memory 
“cluster on a chip”.  Its memory architecture is composed of 
multiple distinct address spaces to support both distributed 
and shared memory programming models.   

The most obvious architectural innovation with respect to 
memory is the message passing buffer (MPB) included on 
each tile. It provides a fast, on-die shared SRAM, as opposed 
to the bulk memory accessed through four DDR3 channels. 
While the processor does not offer any hardware-managed 
memory coherence, it features a new memory type to enable 
efficient communication between the cores.  This new 
memory type is called the Message Passing Buffer Type 
(MPBT). 

To understand this new memory type, consider how 
memory is accessed in the x86 architecture.  An x86 processor 
uses a page table to define memory access semantics. Caching 
can be enabled or disabled at page granularity. If caching is 
enabled, the data moves with cache line granularity, i.e. as 32-
byte packets, through the network, whereas for uncacheable 
accesses the original 1-, 2- or 4-byte requests are immediately 
forwarded to the destination memory. In the absence of a 
cache coherence protocol, uncacheable memory regions are 
the natural choice for shared access. However, since the 
P54C’s Front Side Bus (FSB) interface supports only one 
outstanding request, this would impose significant 
performance penalties for communication between cores. 

To alleviate this problem, the SCC processor provides 
MPBT memory commonly used with the tile’s MPBs. A 

 
Figure 1: The SCC layout and tile architecture showing routers (R), memory controllers (MC), mesh interface unit 
(MIU), cache controllers (CC), and second generation Pentium® processor cores (P54C) with their front side bus 
(FSB). 



 3

reserved bit in the P54C’s page table is used to mark MPBT 
data. Legacy software by default does not mark memory as 
MPBT and runs without modifications. If the bit is set, data is 
cached in L1 but it bypasses L2. To speed up writes, which do 
not get cached, a special write-combine buffer is placed 
downstream of the L1. It aggregates write requests from the 
core and forwards the data either when a whole cache line is 
written, or when content on another cache line is written. To 
support software-managed coherence a new instruction called 
CL1INVMB was added to the P54C. In one cycle it 
invalidates (not flush!) all cache lines tagged as MPBT in the 
L1 so any subsequent access will go to memory. 

An important feature of the SCC is the way the system 
memory is mapped into a core’s address space. In the early 
90’s when the P54C was designed, 32 address bits provided 
ample scope. Today, however, 4 GB of memory is insufficient 
for 48 cores. So on the SCC the 32-bit physical address space 
of the cores is divided into 256 chunks of 16 MB, each of 
which is mapped through a look-up table (LUT) to a 34-bit 
system address and the destination coordinate in the mesh (4 
MCs @ 34b address  max. 64 GB DDR3 memory). Hence, 
the LUT configuration determines whether a physical address 
refers to off-chip DDR3 memory or on-die MPB memory. 

A common system configuration, and the one used for the 
rest of this paper, views the address space in terms of three 
major regions (see figure 2): 

- Private off-chip memory associated with each core: The 
LUTs are configured such that specific regions of the 
DDR3 memory are only accessible by a single core. This 
corresponds to the main memory of a conventional PC, 
i.e. the standard P54C memory model applies (private 
DRAM  L2  L1  CPU). 

- Shared off-chip DRAM:  Such shared memory regions 
are mapped by all LUTs and the system driver configures 
it as uncacheable regions by default to avoid consistency 
issues. This provides a direct link to the CPU, or more 
precisely, to the register file in an individual core. 

- Shared on-chip SRAM (MPB): These addresses are 
mapped by all LUTs and marked at MPBT data in the 
page tables so the data can be cached in the L1 caches of 
the cores. . 

 Since coherence between cores is managed by the 
programmer, enforcing partial order of operations across cores 
is an important aspect of programming SCC.  In some 
instances that requires mutually exclusive access to shared 
memory locations. For that purpose a test-and-set register 
(test&set) is provided for each core. Together with all other 
control and configuration registers, they are mapped into the 
physical address space through appropriate LUT entries. Since 
the test&set operation is atomic, the register supports lock 
semantics and can be used to implement atomic updates of 
more complex data structures. 

The SCC processor does not provide a flush operation to 
help the programmer maintain consistency between views of 
data in the cache and in shared memory. This practically 
excludes conventional cacheable memory from data sharing as 
the L2 content cannot be controlled directly. When loading 
MPBT data it is necessary to invalidate the corresponding 
lines in L1 in order to prevent reading stale information. In 
case of writes it must be ensured that the data reaches its final 
destination before e.g. releasing a lock. One way to 
accomplish this is, again, through MPBT invalidation (i.e. the 
CL1INVMB instruction)  before updating MPB content (this 
guarantees a write miss which will propagate downstream) 
and by always writing entire cache lines in order to flush the 
write-combine buffer. 

IV. SCC PLATFORM 

A major research thrust for the SCC chip is to explore 
different ideas for how to construct scalable platforms for 
many core chips.  At this time we have developed two 
platforms based on the SCC chip. 

 
Figure 2: Memory Architecture of the SCC processor as used with the SCC native message passing API (RCCE). 



 4

The most commonly used platform is based on running a 
Linux kernel on each core.  We used the Linux Kernel 2.6.16 
with Busybox 1.15.1.  A TCP/IP driver was implemented to 
support safe communications between cores on a die (not used 
by our native message passing layer for efficiency reasons, see 
section V) and to provide a connection to a management 
console.  This allowed us to export an NFS file system visible 
among all the cores.  In addition, drivers for low-level access 
to the MPB and other hardware features of the SCC were 
included.   Since each core runs a familiar Linux OS and x86 
instruction set, we were able to use the Intel suite of 
compilers, and Intel’s sequential Math Kernel Library (MKL) 
for mathematical functions. 

In addition to the Linux platform, we adapted a C-based 
programming framework that lets code run directly on the 
SCC processor without an OS.  We called this the 
“BareMetalC” environment.  It provides direct access to all 
hardware features of the SCC processor and is useful to 
establish benchmarking baselines.   The software feature set 
available with this environment, however, is limited (for 
example, only rudimentary memory mapped I/O is supported), 
making it difficult to use for significant application 
development. 

The BareMetalC and Linux platforms both use a 
Management Console PC to bring up and control the SCC 
platform.  It is written in C++ and uses the Nokia Qt cross-
platform application and UI framework.  This console 
interacts with the SCC processor through the PCIe interface 
with drivers that provide: 

- TCP/IP connection to SCC 

- Connection to Management Console PC applications. 

- Access to all memory and register locations of SCC. 
Functionality is exposed through a C++ programming API 

(sccApi), through command-line tools (e.g. sccReset to reset 
the cores) or through a graphical user interface (sccGui).   
These utilities are provided with an SCC platform and will not 
be described further in this paper.   

V. SCC COMMUNICATION ENVIRONMENT (RCCE) 

The SCC architecture supports a variety of parallel 
programming models.  At its foundation, however, the SCC 
processor is a message passing chip.  The cores may interact 
through shared memory, but with the total lack of cache 
coherence between cores, the most natural and efficient 
programming models for this chip build on the ability to send 
messages between cores.  The message passing library 
developed for this chip and used to analyze workloads as the 
chip was designed is called RCCE. 

RCCE is based on one-sided “put and get” primitives 
similar to those in the well known SHMEM library [6].   
These primitives move data from the private memory through 
the L1 cache of the sending core to the message passing buffer 
(MPB) and then to the L1 cache of the receiving core.  The 
MPB allows L1 cache lines to move between cores without 
having to use the off-chip memory. We note that RCCE was 
designed to support Linux as well as BareMetalC, which 
means it must be able to function without any operating 
system. This places a number of restrictions on the library. For 
example, no threads are present in BareMetalC, so 
asynchronous message passing is not possible. 

RCCE uses a static Single Program Multiple Data (SPMD) 
model familiar to message passing programmers.  When an 
application is launched (using a program we provide called 
“rccerun”), the user specifies the number of cores to use from 
a given subset of cores on the chip.  Identical executables are 
launched on all cores, where they are run by a “unit of 
execution” or UE.  The UE is an agent that “owns the program 

 
Figure 3: Symmetric name space model for the MPB when used with RCCE, showing the MPB segments for cores 0 to 47, 
and an expanded view of the MPB segment for core 2.  While we show storage for flags in a contiguous block at the 
beginning of the segment, flags may be spread throughout the segment depending on RCCE’s usage mode. 



 5

counter” and makes progress in a computation; i.e. it is an 
abstraction that can be implemented as a thread or process. 
Once assigned to a core, a UE remains pinned to that core.  
Each UE is assigned a rank, which is a sequence number 
ranging from 0 to N-1 (N is the number of participating 
cores).  Since a UE is pinned to a core, the rank uniquely 
defines a core and a UE. The beginning of most RCCE 
programs includes calls to the functions: 
RCCE_init(&argc, &argv);  
int num_cores = RCCE_num_ues(); 
int ID = RCCE_ue(); 

These functions initialize the RCCE library, return the total 
number of cores, and define a core’s ID as its rank. 

In the RCCE execution model, programs start on the cores 
in an unspecified order.   Any program that depends on a 
particular order is a non-conformant RCCE program.  As a 
further simplification, we assume that only one RCCE 
program is running on the SCC at one time.  Finally, RCCE 
assumes that the contents of the test&set registers and the 
MPB are “zeroed” when a program launches.  Utilities that 
help a user ensure that the system is in a clean state are 
provided with the SCC platform. 

The key to understanding the implementation of RCCE is 
the MPB.   While the MPB is physically distributed about the 
tiles of the SCC processor, it is logically a single shared 
address space; any core can write to any address in the MPB, 
using a simple memcpy.  Managing the consistency of this 
address space between cores for general data structures would 
be difficult, so we adapted the MPB to a specialized structure 
to support message passing.  

We call our approach a “symmetric name space” model (see 
figure 3).  In this approach, the MPB is logically divided into 

8 KB contiguous blocks, one per core, which we create by 
dividing the 16 KB MPB on each tile into two equal segments.  
A portion of each segment is used for flags that coordinate 
communication between cores.  The rest is available to use as 
buffers for passing messages between cores.  We create these 
buffers through a collective function call to the RCCE MPB 
memory allocator, for example; 
char *A = (char *)RCCE_malloc(size); 

By signifying this as a collective function call, we require that 
every core participating in the computation call this function 
and do so in the same order with respect to other RCCE 
functions.   RCCE_malloc() creates a named region “A” on 
each core defined by its offset from the beginning of each 
core’s segment in the MPB.  This allows a core to later “put” 
or “get” a packet (buffer) in private memory into or from the 
MPB with reference to the ID of the target core and the name 
of the region in the calling core’s MPB (A):  

RCCE_put(A, buffer, size, ID);  
RCCE_get(buffer, A, size, ID); 
The symmetric name space allows us to manage the 

complexity of the MPB address space inside our RCCE 
functions and saves the programmer from explicitly 
computing addresses in other cores’ segments of the MPB.   

RCCE is a low level API that exposes the full capabilities 
of the SCC processor.  Hence, details that are typically hidden 
in mainstream message passing environments such as MPI are 
fully exposed in RCCE.  For example, the named region “A” 
must be cache aligned, occupy full L1 cache lines (i.e. 
multiples of 32 bytes) and fit within the available space in the 
MPB.  Since the SCC processor does not provide cache 
coherence between cores, the programmer must enforce 
protocols for safe movement of data. This is done with 

 
Figure 4: A simple RCCE program to shift messages around a logical ring of UEs (with one UE per core on current 
experiments with SCC).  This version of the program uses the low level one-sided communication layer. 



 6

explicit synchronization flags to ensure that bulk reads and 
writes complete in the right order.  To support this 
functionality, we added functions to allocate, set and wait on 
Boolean flags in the MPB.  First, the programmer needs to 
define a variable of type RCCE_FLAG (defined in RCCE.h) 
and allocate space for the flag.   
RCCE_FLAG fl;  
RCCE_flag_alloc(&fl); 

The flag is set or unset with a RCCE flag_write function. A 
UE can wait on a value of a flag using a RCCE wait_until 
function: 

RCCE_flag_write(&fl, RCCE_FLAG_SET, ID); 
RCCE_wait_until(fl, RCCE_FLAG_UNSET); 

To work with the flags, we have defined values 
RCCE_FLAG_SET and RCCE_FLAG_UNSET in RCCE.h. 
To understand the operation of the flags and how they interact 
with the one sided communication functions, consider the 
program listing in figure 4.  This program treats the collection 
of UEs as a ring and passes messages clockwise around the 
ring (each UE gets a packet from the “left” and passes it to the 
“right” during each round).  Flags are allocated and used to 
enforce a safe order to put values into the MPB and to later 
pull them from the MPB.  Note that this code assumes that the 
message fits in the MPB, that the buffer in the MPB is cache 
aligned, and that reads and writes occur in full cache lines 
(BUFSIZE is divisible by 4). 

RCCE allows the programmer to specify whether each flag 
occupies a whole cache line, or only a single bit within an 
MPB cache line. The latter results in a storage compression 
factor of 256 compared to whole-cache-line flags, which 
means that more space within the MPB can be allocated to 
communication payload (potentially higher bandwidth). 
However, it also requires the guarantee of atomic write access 
to the flags, which on the SCC can only be accomplished by 
guarding writes with a lock. Conveniently, the test&set 
register can be used for that purpose, but the locking operation 
does result in higher latencies. 

The one-sided API exposes all the details of managing the 

movement of cache lines through the SCC processor.  Our 
goal was to create the smallest practical message passing 
library suitable for the SCC processor. We found, however, 
that as we ported applications to RCCE, we often needed two-
sided synchronous message passing of the type used in the 
ring shift example.  Hence, we added a pair of two-sided 
communication functions to RCCE that build on the 
elementary RCCE_put/get and flag manipulation routines 
(flag and MPB management is done by the library and may be 
hidden from the programmer), and relax restrictions on the 
message size: 
RCCE_send(sendbuffer, size, target_ID);  
RCCE_recv(recvbuffer, size source_ID); 

The behavior of these functions will be familiar to message 
passing programmers.  The functions block until matching 
calls on both sides complete execution (synchronous 
communication).  The private buffer on the sending side is 
broken into packets that are passed through the MPB to a 
private buffer on the receiving side.  Note that in MPI, the 
functions MPI_Send/Recv imply synchronization even for a 
zero sized message.  This is not the case in RCCE, whose 
messages are headerless.   A zero sized buffer is analogous to 
a no-op and returns immediately without implying any 
synchronization. 

The ring shift example using these two new routines is 
shown in figure 5. Because all aspects of flag management are 
now hidden from the programmer, we cannot judiciously seed 
the flags with values that allow the code to make progress 
without changing the structure of the loop body. By splitting 
the body of the loop into two phases and adding a memory 
copy operation, we can avoid deadlock and guarantee 
correctness. This has proved a recurring theme when porting 
codes from MPI to RCCE. In MPI one can use asynchronous 
communication to avoid deadlock—at the cost of maintaining 
and traversing message queues. In the strictly synchronous 
RCCE environment, deadlock-free communication patterns 
must be chosen upfront, requiring additional programmer 
effort, but paying off through improved performance, 

 
Figure 5: A simple RCCE program to shift messages around a ring of UEs. Most declarations are omitted to save space. This 
version of the program uses the basic two-sided communication layer.  



 7

particularly through lower latency. 
The addition of the two-sided synchronous mode to 

message passing is typical of our approach.  As we find the 
need for new functionality, we add it to RCCE, but retain 
access to the lower level functions. The goal is to keep RCCE 
small, but to include essential functionality to support 
programmer productivity.  In addition to the basic message 
passing, RCCE currently includes: 
 A power management API to modify voltage and 

frequency within sectors of the SCC (Section VI) 
 Communicators to define partitionings of UEs within 

collective communications (reduction, broadcast, 
barrier) 

 Memory (de-)allocation for the MPB and the off-chip 
shared DRAM 

As the user base grows around RCCE, we anticipate adding 
a small number of functions to the library. The overall size of 
the API, however, will be limited. RCCE is small enough so it 
is easy to port and easy to maintain by a small team. This is an 
important advantage of RCCE. If more fully functioning 
message passing is required, a programmer can always use 
MPI (which has been ported to SCC under Linux through an 
interface to the TCP/IP stack running on each core). In 
addition, we have shown it is possible to build abstraction 
layers on top of RCCE—such as the well-known Actors 
model [15]—without any modification to the library. 

VI. SOFTWARE CONTROLLED POWER MANAGEMENT 

Limiting the power consumed by processors is one of the 
most important tasks facing designers and system builders 
today. RCCE adopts the philosophy that whenever a workload 
can use the cores at a reduced power but without affecting 
performance, it should be possible to throttle energy 
consumption under control of the library. For example, cores 
may idle while waiting for work, or they may enter a phase 
dominated by I/O or memory accesses, in which case the local 
clock can be slowed without changing total wall clock time of 
an application.  

The SCC processor offers elementary facilities for varying 
voltage and frequency. Specifically, the voltage within each 
block of 2x2 tiles (8 cores) can be specified by writing an 
appropriate control value into a single designated register for 
the entire chip. Similarly, the frequency within any tile can be 
specified by writing an appropriate control value into a 
designated register within that tile. Because voltage and 
frequency are not independent, care must be exercised that the 
cores not leave the safe electrical operation zone. For that 
purpose, RCCE contains a pair of power management 
functions that initiate and finalize a discrete step (up or down) 
in power usage within the voltage domain containing the 
calling UE by changing voltage and frequency (Fdiv specifies 
a target integral CPU clock frequency divider) in tandem. 
RCCE_iset_power(Fdiv, &RCCE_request); 
RCCE_wait_power(&RCCE_request); 
The reason for the split in two functions is that SCC voltage 

changes currently incur a significant latency (on the order of 

one millisecond, or half a million core cycles, on a quiescent 
processor with baseline frequency setting). Without the split, 
the affected cores would need to block during a power 
transition, thus wasting cycles. However, if 
RCCE_wait_power is issued sufficiently long after the 
corresponding RCCE_iset_power, no wait is incurred at all. 
Often, it is only the application programmer who can 
determine when these power change instructions can be 
inserted to advantage.  

Use of these power management functions is complicated 
by the granularity of the voltage control domains.  Power 
changes apply to all 8 cores within a domain, so programmers 
must ensure that all participating cores in the domain benefit 
from a power change. This may require careful 
synchronization among those cores. Moreover, only one 
voltage change request can be serviced by the processor at any 
one time, creating the possibility of induced core stalls when 
multiple requests are issues (nearly) simultaneously. 

When the application can not accommodate the long 
latencies associated with voltage changes, programmers can 
reduce power by reducing the clock frequency within a whole 
voltage control domain. This is done with a call to: 
RCCE_set_frequency_divider(Fdiv); 

where the integer parameter, Fdiv, stipulates an integral 
divisor to reduce the frequency from the baseline reference 
clock for the chip. This incurs a latency of only about 20 core 
cycles, but is less effective than combined frequency/voltage 
scaling. 

VII. RESULTS 

With two platforms (BareMetal and Linux) and a myriad of 
power settings to consider, a full exploration of SCC 
performance would go well beyond the scope of this paper.  
Instead, we provide a preliminary snapshot of SCC 
performance numbers.  In particular, we report network 
latency and bandwidth numbers with RCCE, results from our 
port of two NAS parallel benchmarks (BT and LU) [7], and 
some preliminary results from our power management 
experiments. For all measurements the cores were running at 
533 MHz and the mesh at 800 MHz.   

To evaluate network latency we used “ping-pong,” a 
program that uses RCCE_send/recv to bounce messages 
between pairs of cores.  We fixed one core at the corner of the 
chip and then changed the second core in the pair to measure 
the round-trip latency of a 32 byte message as a function of 
the number of hops across the network.  The observed data 
was an excellent fit to a straight line with slope of 30 
nanoseconds and a y-intercept of 5 microseconds.  The y-
intercept of 5 microseconds represents the cost incurred within 
the cores at either side of the communication and compares 
favorably with the measured round trip latency between the 
cores on a single tile (5.2 microseconds). The slope 
corresponds to the incremental cost of moving messages 
across the network.  Since a 32 byte message fits within a 
single cache line, the message and the two flags used inside 
RCCE_send/recv to manage the messages result in three 



 8

network transactions per network hop. As shown in [4], the 
cost of a hop across a router is 4 cycles. Hence, for a network 
running at 800 Mhz, we expect a roundtrip latency of 
2*3*4/0.8 GHz or 30 nanosecond per hop; which is precisely 
the value we observed. 

We also used the ping-pong program to measure bandwidth 
between a pair of cores with a network distance of 8 hops (see 
figure 6). We tested the following configurations: 

A. MPB of nominal size (8KB/core) and 32-byte flags. 
B. MPB of nominal size and 1-bit flags. 
C. MPB of 50% of nominal size and 32-byte flags. 
D. MPB of 25% of nominal size and 32-byte flags. 
As expected, the cost is largely due to operations executed 

by the cores, not to time spent on the network.  We see four 
performance domains for case A in figure 6, with some 
variations for the other cases. The bandwidth climbs steadily 
up to approximately half the size of the L1 cache (L1C).  The 
16 KB L1C saturates around this point, since on the receiving 
core, the L1C is consumed by both the message read directly 
from the MPB and by the destination buffer in the core’s 
private memory.  At messages of 8 KB, and beyond the L1C 
experiences increasingly frequent evictions, due to conflicts 
between MPB reads and message writes, as well as between 
the writes themselves. This results in a steep drop in 
bandwidth. until at 24 KB no useful private memory message 
data remains in L1 at the end of the message transfer, and 
bandwidth levels off to that sustainable by the L2 cache.  As 
messages continue to grow, they exceed a size that can be 

accommodated by the L2 cache and performance drops again, 
to a level determined by bandwidth to the off-chip DRAM.   

Comparing cases A and B, we observe that 1-bit flags are 
always slower than 32-byte flags. The 1-bit flags incur an 
overhead because updates to these flags must be protected 
with locks (implemented with test&set registers). The 32-byte 
flags, however, consume more space in the MPB, leaving less 
space for payload, and thus requiring more synchronizations. 
For example, if all 48 cores participate in the computation, the 
32-byte flags consume about 30% of the MPB, as opposed to 
less than 1% for the 1-bit flags. Our observations show that 
the benefits of more space in the MPB for messages are 
clearly overshadowed by the extra overhead of  manipulating 
locks..  

 To further explore effects due to the size of the MPB, we 
reduced the effective size of the MPB by half (case C) and by 
75% (case D).  As seen in figure 6, case C has virtually the 
same performance as case A, except at a message value just 
larger than 50% of the MPB. Reducing the effective MPB 
even further (case D) has an unexpected effect. While some 
bandwidth degradation can be observed for message sizes 
greater than 25% of the MPB, we actually see bandwidth 
improvement for messages greater than the MPB.  The smaller 
MPB for case D reduces the number of cache lines needed to 
hold a block of data read from the MPB; thereby leaving more 
space in the receiving core’s L1 cache to hold the destination 
buffer for the message.  The dips in the bandwidth curves for 
cases C and D at messages of size 4096 and 2048, 

 
Figure 6: Bandwidth between core 0 and 46. Cases A, C and D use 32-byte flags.  Cases A and B use the full size MPB.  We 
provide three reference points (1/2  L1 cache (8 KB), 3/2 L1 cache (24 KB), and  L2 cache (256 KB)) to define four 
performance regions for different message sizes (MSG): (i) MSG < 8 KB, no L1 conflicts, (ii)  8KB<MSG<24Kb, increasing 
L1 conflicts, (iii) 24KB<MSG<256 KB, saturated L1, performance dictated by L2 bandwidth, and (iv) 256 KB<MSG, 
saturated L2,  performance leveling off to speed of DRAM.



 9

respectively, are due to the fact that these incur a second 
synchronization as the message just spills out of the MPB 
payload area.  
   For a more challenging problem, we ported the LU and BT 
benchmarks from the well-known NAS parallel benchmarks 
[7] to RCCE. These have distinctly different communication 
patterns.  LU uses a “pencil decomposition” to assign a 
column block of a 3D discretization grid to each core.  A 2D 
pipeline algorithm is used to propagate a wavefront 
communication pattern across the cores.  BT decomposes the 
problem into larger numbers of blocks that are assigned to the 
cores using a cyclic distribution.  The communication patterns 
are regular and employ geometrically nearest neighbor 
exchanges as the algorithm sweeps over successive planes of 
blocks.  We ran the Class A, B and W benchmarks.  We found 
the best performance for the Class B benchmarks on a 
102x102x102 discretization grid; results of which are shown 
in figure 7.  The speedup is good across the range of problems 
studied. This is not surprising. The LU and BT benchmarks 
are highly scalable. Since the SCC network is much faster 
than the cores, network overhead is insignificant relative to 
the performance of the cores and we expect such scalable 
benchmarks to scale well on SCC.    

To test RCCE’s power management API we implemented a 
simple synthetic application based on a task queue.  Each task 
was executed by a team of cores comprising an entire power 
domain. The tasks were further decomposed into subtasks, 
which were internally implicitly synchronized through fine-
grain communications. This produced the desired effect of 
keeping all cores in a power domain in the same 
computational intensity state during the life of each task. No 
synchronization was implied between the top-level tasks. Each 
task featured a memory intensive initialization phase, 
providing a good opportunity for power reduction, as well as a 
CPU intensive phase requiring maximum voltage and 
frequency. By matching the voltage and frequency to the 

needs of the phases, the resulting application experienced 
instantaneous power reductions of up to 74%. We did not 
determine aggregate power savings which will depend 
strongly on the ratio of  the time spent in computationally (and 
power) intensive phases over other phases in an application. 
Moreover, for time sensitive applications the programmer 
should take care to not increase the execution time by 
inadvertently causing slowdown of computationally intensive 
phases or by introducing stalls due to inappropriately 
scheduled power transitions. Power management on SCC  is 
still an active area of research. 

VIII. RELATED WORK 

Message passing in the form of MPI [8] is the legacy API 
of parallel computing.  MPI is a full-featured API that has 
proven effective for a remarkably diverse range of parallel 
workloads on both shared memory and distributed memory 
platforms.  Indeed, MPICH [9] has been ported to the SCC 
processor and ran without modification on top of the TCP/IP 
drivers on the Linux SCC platform. 

MPI, however, is large and mapping it directly onto the 
low-level features of a platform (as opposed to using a 
portable networking protocol such as TCP/IP) can be 
prohibitively difficult.  Furthermore, MPI was designed for 
general applications programming for large distributed multi-
computers such as clusters or MPP systems.  Our interest with 
RCCE is to consider a message passing API designed 
specifically to the needs of a many-core processor.  RCCE 
started small and only grows new functionality as the need 
arises.  It will be interesting to see how much of MPI’s 
functionality needs to be added to RCCE as our user base 
grows. 

The Multicore Association developed MCAPI [10], a 
message passing API designed specifically for many-core 
processors.  MCAPI has two-sided message passing similar to 
that found in MPI, but it also includes channel based 

 
Figure 7: MFLOPS vs. number of cores (UEs) for the NAS Parallel Benchmarks LU and BT [7] with the class B problems on 
a 102 x 102 x 102 grid.   The benchmarks used RCCE and ran on the SCC processor with 533 MHz cores, 800 MHz routers 
and 800 MHz DDR3 memory controllers.       



 10

protocols.  These let a programmer set up a communication 
pattern in terms of fixed channels, which can then be used 
repeatedly for low latency message passing.  MCAPI is 
around one third the size of MPI, but compared to RCCE it is 
still a large API.  More significantly, MCAPI is a portable 
API that should be able to map onto almost any many-core 
processor.  This contrasts with RCCE, which was created as 
part of a hardware/software co-design process for the SCC 
processor. 

We believe a streaming protocol built on top of RCCE’s 
put/get API would let us support MCAPI.  For applications 
with regular communication patterns, MCAPI’s channel based 
approach could reduce latencies. We plan to experiment with 
this approach and determine if the latency savings are 
significant on the SCC processor. 

An important project closely related to RCCE is SHMEM 
[6].  We have already described how the one sided API used 
in RCCE was modeled closely after SHMEM. A more 
significant similarity between the two projects, however, is 
that both SHMEM and RCCE were designed with 
optimization to a specific hardware platform in mind; the SCC 
processor in the case of RCCE and the Cray MPP systems 
(e.g. T3D and T3E) in the case of SHMEM.  This results in 
lower latencies, but we note that for both SHMEM and RCCE, 
the low-latency one-sided communications require 
complicated synchronization mechanisms that can be 
challenging to manage in application programs. Consequently, 
we added a two-sided communication protocol to RCCE.  

Other projects whose one-sided communications resemble 
those in RCCE are ARMCI [13] and GASNet [14]. Both of 
these communication libraries, as well as SHMEM, rely on the 
capability to move data between different address spaces via a 
native network-specific Direct Memory Access (DMA) 
mechanism, or on the availability of globally shared memory. 
Neither of these facilities exists on SCC.  The processor does 
not provide the functionality of proprietary Network Interface 
Cards required for DMA, and the on-chip shared memory that 
RCCE uses to speed up data transfer is so small that it can 
only be used as a staging buffer, not as the final destination 
for data. Moreover, the absence of cache coherence of the 
MPB makes it unsuitable for direct access by the application 
programmer. Thus, while the syntax of RCCE’s one-sided 
communications is very similar to that of SHMEM, ARMCI, 
and GASNet, there is an important semantic difference in that 
a single one-sided RCCE copy operation cannot complete a 
general communication between cores. 

IX. FUTURE WORK AND CONCLUSIONS 

Our software work with the SCC processor has just begun.  
Unlike the 80-core chip, which was accessible to only a 
handful of researchers inside Intel Corporation, the SCC 
processor is being made available to research collaborators in 
both industry and academia [11]. Consequently, the scope of 
software research for the SCC processor will be extensive.  
Projects either planned or already underway include: 

 Porting numerical linear algebra software from the 
FLAME group at UT Austin [12]. 

 Improving bandwidth of large message transfers by 
pipelining. 

 Constructing deadlock-free efficient collective 
communications using only blocking calls for important 
communication patterns (all-to-all, permutation, etc.) 

 Exploring different ways to utilize the power 
management features of SCC using system software 
utilities or explicitly inside application software. 

 Detailed benchmarking studies to establish a performance 
baseline and evaluate overheads from different system 
software configurations and synchronization flag 
implementation strategies. 

 Evaluating the effectiveness of different many-core 
operating systems on the SCC processor 

Our preliminary work has demonstrated that the SCC 
processor and its native message passing API provide an 
effective software development platform.  While RCCE is 
small, it has been sufficient to program both the benchmarks 
reported here and a range of different applications not 
discussed in this short paper.  The expected difficulties due to 
the lack of asynchronous message passing have so far not 
materialized. We have been able to construct ad hoc 
synchronous communication patterns required by RCCE for 
all ported applications, and have started to develop theory on 
how to make our approach more general.   

We validated that the on-chip shared memory buffer—
added to the design by request of the SCC software team—
though small, is large enough to support efficient inter-core 
communications. The symmetric memory model RCCE 
employs for the message passing buffer, which at first glance 
may appear rather restrictive, proved to be not a hindrance at 
all. And because it enables on-chip shared memory access 
without coordination with other cores, it is very efficient, in 
addition to being easy to program. 

Using SCC power management capabilities in their current 
form for application-steered power optimization is 
cumbersome at best. We expect great improvements in utility 
and programmability if the following expected trends 
materialize:  
 Shrinking the size of voltage and frequency domains to a 

single core. 
 Reducing the latency of voltage change commands to a 

few (less than 100) cycles. 
Finally, we found that although it would have been 

desirable to allow atomic operations on data in the message 
passing buffer, the availability of a single test&set register per 
core provided us with sufficient capability to implement locks 
needed for mutual exclusion. In RCCE these are currently 
used for a single purpose, namely the write protection of 
packed synchronization flags, which all fit within a single 
cache line. Hence, there is no need for more such registers. It 
remains to be determined whether more registers would 
improve performance as more programming models are ported 
directly to the SCC or layered on top of RCCE. 



 11

REFERENCES 
[1] Rakesh Kumar, Timothy G. Mattson, Gilles Pokam, and Rob van der 

Wijngaart, “The case for Message Passing on Many-core Chips”, 
University of Illinois Champaign-Urbana Technical Report, UILU-ENG-
10-2203 (CRHC 10-01), 2010.  

[2] Sriram R. Vangal, Jason Howard, Gregory Ruhl, Member, Saurabh 
Dighe, Howard Wilson, James Tschanz, David Finan, Arvind Singh, 
Member, Tiju Jacob, Shailendra Jain, Vasantha Erraguntla, Clark 
Roberts, Yatin Hoskote, Nitin Borkar, and Shekhar Borkar, "An 80-Tile 
Sub-100-W TeraFLOPS Processor in 65-nm CMOS," IEEE Journal of 
Solid-State Circuits, Vol. 43, No. 1, Jan 2008. 

[3] Tim Mattson, Rob van der Wijngaart, Michael Frumkin, “Programming 
Intel's 80 core terascale processor,” Proceedings of the 2008 ACM/IEEE 
conference on Supercomputing , SC08, Austin Texas, Nov. 2008 

[4] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. 
Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. 
Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow, M. Riepen, 
G. Droege, J. Lindemann, M. Gries, T. Apel,  K. Henriss, T. Lund-
Larsen, S. Steibl, S. Borkar, V. De1,  R. Van Der Wijngaart, T. Mattson,  
"A 48-Core IA-32 Message-Passing Processor with DVFS in 45nm 
CMOS”, Proceedings of the International Solid-State Circuits 
Conference, Feb 2010 

[5] D. Anderson, T. Shanley, Pentium Processor system architecture, 
Addison Wesley, 1995. 

[6] R. Bariuso, Allan Knies, “SHMEM’S User’s Guide,” Cray Research, 
Inc., SN-25 16, rev. 2.2, 1994. 

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. 
Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S., 
Schreiber, H. D. Simon, V. Venkatakrishnan and S. K. Weeratunga, 
“THE NAS PARALLEL BENCHMARKS,” Intl. Journal of 
Supercomputer Applications, vol. 5, no. 3 (Fall 1991), pg. 66-73 

[8] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, “MPI: The 
Complete Reference,” MIT Press, 1996 

[9] http://www.mcs.anl.gov/research/projects/mpich2/ 
[10] http://www.multicore-association.org 
[11] http://techresearch.intel.com/articles/Tera-Scale/1826.htm. 
[12] Field G. Van Zee, Ernie Chan, Robert van de Geijn, Enrique S. 

Quintana-Orti, and Gregorio Quintana-Orti. "Introducing: The libflame 
Library for Dense Matrix Computations." IEEE Computing in Science & 
Engineering.11 (6):56--62, 2009. 

[13] J. Nieplocha, V. Tipparaju, M. Krishnan,  D. Panda. High Performance 
Remote Memory Access Comunications: “The ARMCI Approach. 
International Journal of High Performance Computing and Applications, 
Vol 20(2), 233-253p, 2006” 

[14] D. Bonachea GASNet Specification, v1.1, U.C. Berkeley Tech Report 
(UCB/CSD-02-1207), 2002. 

[15] Gul A. Aghaa, * and Wooyoung Kim,  “Actors: A Unifying Model for 
Parallel and Distributed Computing,” J. Systems Architecture, Vol. 45, 
no. 15, September 1999, pp. 1263-1277 

 


