
Extending the Dynamic Power Range of Client
Devices using Heterogeneous Processors

Vishal Gupta∗, Paul Brett†, Scott Hahn†, David Koufaty†, Mishali Naik‡, Paolo Narvaez‡,
Abirami Prabhakaran‡, Dheeraj Reddy†, Karsten Schwan∗, Ganapati Srinivasa‡

∗Georgia Institute of Technology, Atlanta, GA
†Intel Labs, Hillsboro, OR

‡Intel Corporation, Hillsboro, OR

Abstract—The ubiquity of handhelds is causing an unprece-
dented increase in the range of performance demands imposed
on mobile platforms, and at the same time, battery life and
energy efficiency remain critical concerns. Yet modern processors
are typically designed to meet only one, not both, of these two
conflicting goals: to offer high performance vs. provide power
savings. This work explores an approach in which heterogeneous
processors, i.e., a mix of different cores, are used to extend
the dynamic power/performance range of client devices. Unlike
previous work addressing server systems, we focus on the client
workloads typically seen in modern end-user devices. Further, we
evaluate the importance of taking into account ‘uncore’ power in
total SoC power consumption, with results that indicate the need
for additional uncore power scalability when seeking to extend
a platform’s dynamic power range. Experimental evaluations
based on characterization of several client applications and usage
scenarios seen on mobile devices use a unique experimental
testbed comprised of heterogeneous cores that strongly differ
in power/performance and with a shared uncore component.

I. INTRODUCTION

Mobile devices have emerged as a dominant computing
platform for end users. Since their battery capacities are
severely restricted due to constraints on size and weight,
energy efficiency is critical to their usability. Desired long
battery life, however, is challenged by end user demands for
high performance for compute-intensive tasks like gaming
and media-rich interactions. Chip vendors’ adoption of multi-
core processor architectures to deliver increased levels of
performance is further increasing the difficulties of providing
long battery life.

Heterogeneous chip multi-processors (CMPs), consisting of
cores with different power/performance characteristics (see
Figure 1), have been proposed as an energy-efficient alternative
to symmetric multicores (SMPs) [1], [3], [4], [6]. Heteroge-
neous processors enable different applications to be executed
on the core that is most appropriate. For example, applications
that are I/O heavy or that do not produce a result that is time
critical to the user can be executed on low power small cores,
while compute-intensive threads requiring significant amounts
of processing or applications with their output visible to the
user such as browsing can be allocated to high performance
big cores. The promise, then, is that by judicious use of
heterogeneity, one can extend the dynamic power range of
client devices, to meet both the high-performance and the low-
power demands of client devices.

B
Boost 

Performance

Conserve
Power

S

Fig. 1. A heterogeneous processor consisting of high-performance big and
low-powered small cores can provide both high-performance and power-save
modes.

This paper investigates the opportunities and limitations in
using heterogeneous multicore processors to provide a wider
dynamic power range for client devices, i.e., to enable both
high-performance and power-savings modes while maximizing
energy efficiency. Unlike previous work on heterogeneous
processors that focused on server workloads, we investigate
typical client workloads seen on modern end-user devices.
This involves characterizing several client workloads and de-
scribing different ways in which they can exploit heterogene-
ity. It also includes an assessment of the uncore subsystem’s
contribution to total SoC (system-on-chip) power consumption
and its implications on heterogeneous processor design.

Experimental evaluation uses a unique, experimental hetero-
geneous multicore platform comprised of both high and low
power cores operating in a shared coherence domain. For this
platform, we analyze the behavior of several client applications
under two configurations: with a fixed vs. a scalable uncore,
the latter allowing uncore power to scale along with core
power. Results demonstrate that heterogeneous core archi-
tectures can provide significant performance improvements
while also lowering energy consumption for a diverse set
of applications when compared to homogeneous processor
configurations. They also highlight the need for a scalable
uncore in order to fully realize the potential gains obtained
from the use of heterogeneity.

II. DYNAMIC POWER RANGE

Client applications exhibit highly diverse behavior in their
processor usage and performance requirements. Compute-
intensive, user-facing applications require a high performance
mode to provide richer user experience. Background tasks or
naturally low-performance applications should be run in ways
that maximize battery life. To provide extended battery life



and at the same time, meet the rapidly increasing demands of
high performance mobile use cases, a client device must offer
a wide dynamic power range – it must be able to operate both
in high-performance and in power-savings modes.

Modern processors are typically designed to satisfy only one
of these two conflicting requirements. Current low-power cores
(e.g., Intel’s Atom processor) are energy efficient, but their
performance is limited. On the other hand, more powerful big
cores like Intel Core R© processors provide high performance,
but at the cost of higher levels of power consumption. The
technological reasons for this is the fact that the power con-
sumption of a processor core consists of static (leakage) power
and dynamic (switching) power. During high activity periods,
the total power consumption of the device is dominated
by dynamic power consumption, while during low activity
periods, leakage power becomes a significant component of
the total power consumption. Current high performance cores
are built from transistors on fast process technologies that
have high leakage power and very fast switching times [1].
Such big cores, therefore, consume high leakage power under
idle or near-idle conditions, but can provide high performance
without significant increases in dynamic power, as shown in
Figure 2. Conversely, low power small cores are built from
low power process technologies with low leakage power but
slower switching times [1]. Such processors consume small
amounts of leakage power, but significantly increase dynamic
power consumption to provide a high-performance mode (see
Figure 2).

Small
core

po
w

er

performance

Big 
core

High switching power at
high performance points

High leakage power at
low performance points

Fig. 2. Big cores are less efficient at low activity points, while small cores are
less efficient at high activity points. Using a heterogeneous processor provides
a wide dynamic power range.

The intuitive outcome is that by using both types of cores,
a single platform can be optimized for both high performance
and low power consumption. The objective of such a system
would be to always use its most efficient cores for the
tasks at hand (shown by the solid line in Figure 2). Such a
heterogeneous platform exhibits a higher power-performance
range than individual big or small cores. This paper explores
whether and to what extent the hardware-based arguments
for heterogeneity stated above lead to realistically achievable
client devices with wide power ranges.

III. CLIENT WORKLOADS

To assess the viability of using heterogeneity to widen client
device power ranges, it is useful to refer to prior server-

centric research on heterogeneous processors [2], [5], [7], [10],
but such server-centric investigations do not directly address
the needs and processor usage models seen on typical client
devices. This section presents representative and typical client
workloads, like browsing, gaming, video playback, etc., and it
formulates metrics for the performance of client applications
that differ from those used for server workloads. Table I
provides a summary of the applications used in our analy-
sis, along with relevant performance metrics. Concrete usage
scenarios under which such workloads can exploit processor
heterogeneity are described in Section V.

Our application suite consists of a diverse set of applica-
tions, which we briefly summarize below:

Workload Description Metric
browse Web-page rendering Load time
palbum Web photo-album Load time
youtube Web-based video playback FPS

strike Web-based 2D game FPS
mplayer Accelerated video playback FPS

openarena 3D first-person-shooter game FPS
lightsmark 3D graphics rendering FPS

filescan File system scan Time
7zip File archiver Time

gmagick Image editor Time
x264 Media encoder Time

eclipse Development environment Time

TABLE I
CLIENT WORKLOAD SUMMARY

• browse: web-browsing is the most common usage of
client devices. This workload fetches a set of web pages
from a web server and renders them periodically. We
introduce a sleep interval of 5s between every two page-
loads to emulate user’s think time.

• palbum: this is a web-based photo album application that
flips through a set of photographs at a 0.5s interval.

• youtube: video playback plays a streaming video inside
the browser for 120s.

• strike: online gaming is an increasingly dominant use case
of client platforms. A demo of a web based 2D game is
played for 120s to evaluate this usage scenario.

• mplayer: a H/W accelerated version of mplayer plays an
HD movie clip.

• openarena: plays a benchmark demo from a 3D first-
person-shooter game (OpenArena).

• lightsmark: this benchmark renders scenes from a 3D
game and measures graphics performance.

• filescan: to evaluate the behavior of I/O intensive applica-
tions, this workload scans through the Linux source tree.

• 7zip: 7zip is a popular client application used for archive
creation. We use a parallelized version of 7zip to com-
press a text file using LZMA compression.

• gmagick: an OpenMP version of the GraphicsMagick
image editing application is used to resize a set of images.

• x264: x264 media encoder is used to encode a media file.
• eclipse: this Java based multi-threaded benchmark runs

non-GUI performance tests for the Eclipse IDE.



IV. BEYOND CORE: UNCORE

The dynamic power range offered by a platform consisting
of heterogeneous cores can be strongly affected by the uncore
subsystem present on modern multicore processors. This sub-
system consists of components like the last-level-cache (LLC),
integrated memory controller (IMC) etc. With growing cache
sizes to satisfy the needs of all of the cores in a multicore
processor, increasing complexity of the interconnection net-
work, various core power optimizations (e.g, idle states), and
the integration of SoC components on CPU die, the uncore is
increasingly becoming a major power component in total SoC
power [8].

Figure 3 illustrates the contribution of uncore power to the
energy consumption of an application executing on hetero-
geneous cores. A big core running an application finishes
its execution faster and enters a low-power idle state. The
same application when executed on a small core takes longer
(tsmall) to finish, which also keeps the uncore active for
a longer period of time. If uncore power is substantial in
comparison to core power, then the energy gains from running
on a small core are strongly affected by the uncore power.
For such a system, energy-efficiency gains from small core
execution may be offset by the increase in uncore energy
consumption due to longer execution time. This observation
is in line with prior work that highlights the tradeoff between
CPU and system-level power reduction in the context of
frequency scaling [9].

Euncore

Ecore
Eidle

Euncore

core

Big Core Execution Small Core Execution

p
ow

e
r

po
w

er

tbig t idle t small

E

Fig. 3. Effect of uncore power on the dynamic power range of heterogeneous
cores.

To account for uncore power and understand its impact
on the dynamic power range of heterogeneous platforms, we
consider two different uncore configurations in our analysis,
namely, fixed uncore and scalable uncore.

1) Fixed Uncore: The fixed uncore configuration uses the
same uncore subsystem when executing on either big or small
cores. The big core and small core energy consumption for this
scenario can be modeled using Equations 1 and 2, respectively.
Here, E refers to the energy consumed, t denotes execution
time, and Pcore and Puncore represent core and uncore power,
respectively. Pidle is the idle platform power and tidle is the
corresponding time. We use a single value of Puncore in both
of the equations for this case.

Ebig = tbig ∗ (P big
core + Puncore) + Pidle ∗ tidle (1)

Esmall = tsmall ∗ (P small
core + Puncore) (2)

2) Scalable Uncore: The scalable uncore scenario models
an uncore where certain uncore components are turned off or
powered down as we move to the small core. For example,
fewer memory channels, memory controllers, or a smaller
cache can be used with a slow small core that imposes smaller
resource requirement on the cache and memory subsystem.
Hence, in this case, the uncore power scales down along
with core power when a workload moves to a different core.
Equations 3 and 4 model this scenario by using different
uncore power values for big vs. small core execution (P big

uncore

and P small
uncore).

Ebig = Tbig ∗ (P big
core + P big

uncore) + Pidle ∗ Tidle (3)
Esmall = Tsmall ∗ (P small

core + P small
uncore) (4)

An analysis of these two uncore configurations provides a
comparative perspective on the potential benefits of heteroge-
neous CMPs with a wholistic SoC-wide view and motivates a
co-design of various SoC components.

V. USAGE SCENARIOS

Client device usage patterns along with the diverse nature of
client workloads motivate the need for a wide dynamic power
range.

A. Platform Usage Scenarios

1) Mobility Constraints: Mobility is an essential part of
client systems. Such devices may either be powered via
wall-power or battery. Wall-power usage does not impose
energy constraints, so that big cores can provide desired levels
of maximum performance. During battery driven operation,
however, a user may be willing to accept lower performance at
the benefit of higher battery life. Low-powered energy-efficient
small cores may be more suitable under such conditions.

2) Thermal Constraints: Client devices like cell phones
and tablets rely on natural cooling. Therefore, these devices
are quite sensitive to platform thermal constraints that impose
limits on the extent to which it is possible to use power-hungry
big cores for sustained periods of time. A small core can be
used for moving the execution away from a big core when
thermal constraints are violated.

B. Workload Usage Scenarios

Users perform a wide variety of tasks on mobile devices
which demands platforms that are able to meet their dynamic
needs and maintain high levels of efficiency. This section
categorizes client applications based on their behavior and
then, discusses opportunities for exploiting heterogeneous
cores.

1) Intermittent Workloads: Client devices like cellphones
and tablets are typically powered-on for long periods of time,
but often perform their heavy computing work in short bursts.
Web-browsing is an example of such usage, and workloads
browse and palbum in Table I belong to this category. A
timeline trace of IPC (instructions-per-cycle) for the browse



0 5 10 15 20 25 30 35 40 45
Time (s)

0.0

0.5

1.0

1.5

2.0
IP

C

(a) Intermittent (browse)

0 10 20 30 40 50 60 70 80 90
Time (s)

0.0

0.5

1.0

1.5

2.0

IP
C

(b) Sustained-low (openarena)

0 5 10 15 20 25 30 35 40
Time (s)

0.0

0.5

1.0

1.5

2.0

IP
C

(c) Sustained-high (x264)

0 10 20 30 40 50 60
Time (s)

0.0

0.5

1.0

1.5

2.0

IP
C

(d) Multi-threaded (youtube)

Fig. 4. Diverse Client Workload Profiles (IPC vs. Time)

workload is shown in Figure 4(a). Idle periods are marked
by low IPC periods, while page loads correspond to spikes
in the graph. Since page loads generate high IPC activity, a
big core can be used for rendering the pages and improving
page-load performance, while resorting to a small core during
low activity periods to conserve power.

2) Sustained Workloads: Sustained workloads differ from
intermittent workloads in that their behavior is uniform over
a longer duration. They can be further classified into two sub-
categories: sustained-high and sustained-low.

Sustained-low: client applications like gaming and media
playback typically run for a long duration (a few minutes to
hours). Moreover, the wide adoption of accelerators in all types
of client devices allows these applications to offload significant
portion of their computation to accelerators. Therefore, the
performance of such applications is less dependent on the
CPU. Figure 4(b) shows the IPC trace of the openarena gaming
benchmark. As the observed IPC is low for the application, it
can be run on a small core without significant degradation in
performance and at lower power.

Sustained-high: mobile devices are also used for compute-
intensive tasks, which include media encoding, photo/video
editing, etc. These applications typically have a high IPC (e.g.,
see x264 encoder in Figure 4(c)), and their performance scales
well on a big core. This makes big cores suitable for these
applications when they require high performance, e.g., when
they are user-facing, while a small core may provide higher
energy-efficiency when they run in background mode (e.g,
virus-scan).

3) Multi-threaded Workloads: With increasing number of
cores on mobile devices, parallelization of client applica-
tions is key to further performance enhancement. Such multi-
threaded applications also present opportunities for exploiting
heterogeneity. 7zip, gmagick, x264, and eclipse are examples
of parallel applications. The youtube workload also uses
multiple threads for audio, video decoding, and rendering for
instance which differ significantly in their IPC as shown in
Figure 4(d). Due to the variation in the behavior and needs
of these threads, their performance will be affected by how
they are mapped to different heterogeneous cores, which can
be leveraged by task mapping and scheduling methods.

In summary, the platform and workload usage scenarios
described above create a case for using heterogeneity to create
a wide dynamic power range for future mobile devices. The

next section validates this point with experimental results
obtained with the aforementioned client applications on a
representative heterogeneous platform.

VI. EVALUATION

A. Experimental Setup

Our experimental platform consists of a quad-core Intel
i7-2600 client processor. To create heterogeneity, we use a
proprietary Intel tool to emulate the performance of a low-
power core for a subset of the CPU cores. A block diagram of
the platform configuration is shown in Figure 5. The i7-2600
processor also contains an on-die graphics processor that is
used to accelerate graphics workloads. All of the CPU cores
operate at a frequency of 2.6GHz and share a last level cache
(LLC) of size 8MB. All the workloads are run using Linux
kernel 3.0 and automated using scripts.

Big core

S
m

al
l

U
nc

or
e

Graphics
 c

or
e

S
m

al
l

 c
or

e

Big core

Fig. 5. Experimental Heterogeneous Platform

B. Methodology

Experimental evaluation and analysis are carried out as the
multiple steps summarized below.

• Each workload is first evaluated on a system configured
to use only big cores. Multi-threaded applications are
configured for a one to one mapping of threads to big
cores.

• Next, the same workloads are run using only small cores.
• The metrics collected include: application performance,

IPC, and various core and package C-state residencies.
• With the help of data collected in previous steps and the

power models described in Section VI-C, we calculate
the performance improvement provided by big over small
cores, and the energy savings that can be obtained by
using small vs. big cores.



br
ow

se
pa

lb
um

yo
ut

ub
e

st
rik

e
m

pl
ay

er
op

en
ar

en
a

lig
ht

sm
ar

k
fil

es
ca

n
7z

ip
gm

ag
ic

k
x2

64
ec

lip
se

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

IP
C

Big
Small

(a) Instructions per cycle

br
ow

se
pa

lb
um

yo
ut

ub
e

st
rik

e
m

pl
ay

er
op

en
ar

en
a

lig
ht

sm
ar

k
fil

es
ca

n
7z

ip
gm

ag
ic

k
x2

64
ec

lip
se

0

20

40

60

80

100

Co
re

 Id
le

 R
es

id
en

cy
 (%

) Big
Small

(b) Core Idle Residency

br
ow

se
pa

lb
um

yo
ut

ub
e

st
rik

e
m

pl
ay

er
op

en
ar

en
a

lig
ht

sm
ar

k
fil

es
ca

n
7z

ip
gm

ag
ic

k
x2

64
ec

lip
se

0

20

40

60

80

100

Pk
g 

Id
le

 R
es

id
en

cy
 (%

) Big
Small

(c) Package Idle Residency

Fig. 6. A comparison of the behavior of several client workloads on big vs. small cores

• The analysis is performed for two different uncore power
configurations, fixed and scalable, using the models de-
scribed in Section IV.

The analysis currently uses big or small cores for the
entire execution of the application. In practice, an application
can dynamically switch between different types of cores and
achieve higher gains, but the implementation and evaluation of
a dynamic scheduling algorithm for client devices remains part
of our future work. The analysis also assumes that workload
performance is not affected by uncore scaling.

C. Power Model

The power models incorporate both core and uncore power
to obtain total CPU power consumption.

Ptotal = Pcore + Puncore (5)

The average power consumption of a CPU core core can be
modeled using the following equations:

Pcore = Cactive ∗ P core
active + Cidle ∗ P core

idle (6)
P core
active = Cdyn ∗ V 2 ∗ F (7)

Here, Cactive denote the percentage residency the core spends
in active C0 state, while Cidle is the residency in higher idle
C states. P core

active is the power consumption for each of the
big and small cores in the active state, while Pidle is the idle
core power. Cdyn is the dynamic capacitance, V denotes the
operating voltage, and F represents the switching frequency.
Core Cdyn is modeled as a function of IPC, as shown and
validated by other researchers [11], in Equations 8 and 9.

Cbig = 0.499 ∗ ipcbig + 0.841 (8)
Csmall = 0.472 ∗ ipcsmall + 0.176 (9)

Similarly, uncore power can be modeled as shown in
Equation 10:

Puncore = PCactive ∗ Puncore
active + PCidle ∗ Puncore

idle (10)

where PCactive and PCidle are package-active and package-
idle residencies, respectively, and Puncore

active and Puncore
idle are the

corresponding power values. The current power model ignores
the variation in uncore power due to LLC access activity.

The analysis uses a value of 0.9V for the voltage (V), and
frequency (F) is kept at 2.6GHz. Core and uncore idle power
are assumed to be 0.1W, while a value of 2W is used for the
active uncore power (Puncore

active ) in case of a fixed uncore. This
power is assumed to scale down to 1W for a scalable uncore.
A 2W power component is added to workloads that exercise
the on-die graphics processor.

D. Experimental Results

The results shown in Figure 6 provide a comparison of
application behavior on heterogeneous cores. Specifically, they
compare average IPC (instructions-per-cycle), core-idle state
residency, and package-idle state residency for all of the
workloads in Table I for big and small core execution. As
evident from Figure 6(a), most of the applications observe a
significant decrease in their IPC when running on the small
core as compared to the big core. This reduction in IPC
results in the small core being active for longer durations,
thereby causing a decrease in core and package idle residency
(see Figures 6(b) and 6(c)). Further, many applications are
seen to have almost negligible package idle residency. These
applications either heavily use the graphics processor (e.g.,
openarena, lightsmark), or they always keep one of the CPU
cores busy (e.g., 7zip, gmagick, x264), and thus do not allow
the uncore to enter into an idle state.

The results shown in Figure 7 evaluate the impact on
application performance of using heterogeneous processors.
All of the applications in the figure are categorized into
three different graphs, depending on the performance metric
in Table I. Figure 7(a) compares the average load-time for
the browse and palbum workloads. We see that the page-load
latency is significantly decreased for these applications when
using a big core. For example, the average page-load time for
browse is decreased from 660ms to 441ms on the big core.
Thus, a big core provides a notable performance boost for such
bursty applications. Figure 7(b) shows the frames-per-second
(FPS) metric for various graphics and media applications.
These applications show only minor performance degradation
on a small core, at levels not perceivable to end users. There-
fore, they can be run on a small core, with only minor perfor-
mance loss and a decrease in energy consumption (discussed
further below). The last graph (see Figure 7(c)) compares the



browse
palbum

0
100
200
300
400
500
600
700

Lo
ad

 ti
m

e 
(m

s)

Big
Small

(a) Load time (ms)

youtube
stri

ke
mplayer

openarena

lightsm
ark

0

10

20

30

40

50

60

Fr
am

es
-p

er
-s

ec
on

d 
(F

PS
)

Big
Small

(b) Frames-per-second (FPS)

filesca
n 7zip

gmagick x264
eclip

se
0.0

0.5

1.0

1.5

2.0

2.5

No
rm

al
iz

ed
 E

xe
cu

tio
n 

Ti
m

e

Big
Small

(c) Normalized Execution Time

Fig. 7. Application performance comparison on big and small cores

normalized execution time for various applications. filescan
being an I/O intensive workload observes a small degradation
(9.1%) in performance on the small core, while other CPU-
bound applications show a significant increase in execution
time with the small core (highest 109.04% for x264).

browse
palbum

youtube
stri

ke
mplayer

openarena

lightsm
ark
filesca

n7zip
gmagickx264

eclip
se

10

0

10

20

30

40

50

En
er

gy
 S

av
in

gs
 (%

)

Core SoC (Fixed) SoC (Scal. Uncore)

Fig. 8. Energy savings of small core execution over big cores for three
configurations: core-only savings, SoC-wide savings with a fixed uncore, and
SoC-wide savings with a scalable uncore.

Energy savings results based on our power models are
shown in Figure 8. The figure shows energy savings for three
scenarios, i.e., core-only savings, SoC-wide savings using
a fixed uncore, and SoC-wide savings assuming a scalable
uncore. As seen in the figure, all of the applications show
significant savings on a small core when only considering the
energy consumption of the CPU cores. The palbum application
has the lowest savings of 13.4%, while openarena has the
largest savings of 46.1%. However, these savings are strongly
affected when the power consumption of the uncore is taken
into account. Some applications even exhibit negative energy
savings for the fixed uncore. On the other hand, when a
scalable uncore is used, these savings increase and become
comparable to core-only energy savings. These results moti-
vate the need for a scalable uncore design when seeking to
obtain large gains from heterogeneous multicore processors.

VII. CONCLUSIONS & FUTURE WORK

In summary, this paper investigates the use of heterogeneous
multicore processors in order to provide a wide dynamic
power range to client devices. Using a diverse mix of client
applications and an experimental heterogeneous platform, we

show that heterogeneous CMPs can be used to provide a
superior solution for these client devices by enabling both
high-performance and power-savings modes while also being
energy-efficient. We also highlight the growing importance of
uncore power in total SoC power consumption and the need
for a scalable uncore design along with heterogeneous cores
to completely realize the intended gains.

As part of future work, we are investigating client-centric
energy-aware scheduling algorithms and heuristics, to dy-
namically schedule tasks on heterogeneous cores. Another
interesting venue for research would be to investigate the ideal
ratios between the number of big and small cores for different
client systems.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank Eugene Gorbatov, Andrew
Herdrich, Alon Naveh from Intel and Karthik Gururaj from
UCLA for their help on this work.

REFERENCES

[1] Variable SMP: A multi-core cpu architecture for low power and high
performance. White paper, Nvidia Corporation, 2011.

[2] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The Impact
of Performance Asymmetry in Emerging Multicore Architectures. In
Proceedings of the 32nd ISCA, Washington, DC, USA, 2005.

[3] P. Greenhalgh. Big.LITTLE Processing with ARM CortexTM-A15 &
Cortex-A7. White paper, ARM, Sept 2011.

[4] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era.
Computer, 41(7):33–38, July 2008.

[5] D. Koufaty, D. Reddy, and S. Hahn. Bias scheduling in heterogeneous
multi-core architectures. In Proceedings of the 5th EuroSys, pages 125–
138, New York, NY, USA, 2010. ACM.

[6] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen.
Single-ISA Heterogeneous Multi-Core Architectures: The Potential for
Processor Power Reduction. In Proceedings of the 36th MICRO, pages
81—-, Washington, DC, USA, 2003.

[7] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, and S. Hahn.
Operating system support for overlapping-ISA heterogeneous multi-core
architectures. In IEEE 16th HPCA, pages 1–12, 2010.

[8] G. H. Loh. The cost of uncore in throughput-oriented many-core
processors. In In Proc. of Workshop on Architectures and Languages
for Throughput Applications (ALTA), 2008.

[9] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony, and R. Rajku-
mar. Critical power slope: understanding the runtime effects of frequency
scaling. In Proceedings of the 16th ICS, New York, NY, USA, 2002.

[10] J. C. Saez, M. Prieto, A. Fedorova, and S. Blagodurov. A comprehensive
scheduler for asymmetric multicore systems. In Eurosys ’10, pages 139–
152, New York, NY, USA, 2010. ACM.

[11] V. Spiliopoulos, S. Kaxiras, and G. Keramidas. Green governors:
A framework for continuously adaptive dvfs. In Green Computing
Conference (IGCC), July 2011.


