
Operating System Support for Shared-ISA
Asymmetric Multi-core Architectures

Tong Li†, Paul Brett†, Barbara Hohlt†, Rob Knauerhase†, Sean D. McElderry‡, and Scott Hahn†

†Intel Labs ‡ Digital Enterprise Group
Intel Corporation

{tong.n.li,paul.brett,barbara.a.hohlt,rob.knauerhase,sean.d.mcelderry,scott.hahn}@intel.com

Abstract

Current trends in multi-core processor implementa-
tion scale by duplicating a single core design many
times in a package; however, this approach can cause
inefficient utilization of resources, such as die space
and power. Recent research has proposed asymmetric
cores as an alternative solution. This paper explores
the design space for asymmetric multi-core architec-
tures, and presents a case study and prototype of one
design in which cores implement overlapping, but non-
identical instruction sets.

We proposefault-and-migrate, which enables the
OS to manage hardware asymmetries transparently to
applications. Our mechanism traps the fault when a
core executes an unsupported instruction, migrates the
faulting thread to a core that supports the instruction,
and allows the OS to migrate it back when load bal-
ancing is necessary. We have also developed three ap-
proaches to emulate future asymmetric processors us-
ing current hardware. Preliminary evaluation shows
that fault-and-migrate enables applications to execute
transparently and incurs less than 4% overhead for a
SPEC CPU2006* benchmark.

1. Introduction

Advances in semiconductor technology have driven
the hardware industry to integrate an increasing num-
ber of cores on-chip. Most existing multi-core proces-
sors consist of identical cores. However, as the num-
ber of cores continues to scale, this design can lead
to inefficient utilization of chip real estate. Recent re-
search [2, 3, 7, 8, 9, 15, 16, 22] proposes asymmetric

(or heterogeneous) architectures as an alternative solu-
tion. For example, Kumar et al. [15] showed that, for
the same die area, integrating out-of-order cores with a
few in-order ones achieves comparable performance to
traditional designs, but much higher energy efficiency.

There is a large design space for asymmetric archi-
tectures, ranging from cores differing only in clock
speed to those differing in microarchitecture and ISA.
The choices of hardware-software interface also vary.
For example, hardware can hide asymmetry and ex-
pose the traditional view of identical cores. Alterna-
tively, it can expose some cores as CPUs while oth-
ers as coprocessors or peripherals. It can also expose
all cores as CPUs and allow software to manage them
completely.

This paper explores the design space for asym-
metric multi-core architectures and presents a case
study of one design,instruction-based asymmetry, in
which cores have overlapping, but non-identical in-
struction sets. To enable transparent execution of ap-
plications, we propose an OS mechanism,fault-and-
migrate, which traps the fault when a core executes
an unsupported instruction and migrates the faulting
thread to one that supports the instruction. Different
policies exist as to when the thread can migrate back.
For example, threads that execute unsupported instruc-
tions infrequently can migrate back quickly for load
balance, whereas threads that frequently execute those
instructions can stay longer on the new core to avoid
the overhead of fault handling and migration.

We have implemented fault-and-migrate in the
Linux kernel 2.6.20 and developed three approaches
to emulate future asymmetric processors using current
hardware. Our first approach emulates the removal of

1



floating-point (FP) instructions on a subset of cores.
The second approach emulates the removal of an arbi-
trary subset of streaming SIMD extensions (SSE) in-
structions on any set of cores. In the third approach,
we built a physically asymmetric, dual-socket system
with two quad-core processors that have different SSE
instruction sets. Preliminary evaluation using this sys-
tem shows that fault-and-migrate enables transparent
execution of applications and better load balancing.
For a SPEC CPU2006* benchmark, it introduces less
than 4% slowdown, compared to pinning the bench-
mark to a core with full support of its instructions.

The remainder of this paper is organized as follows.
Section 2 discusses related work. Section 3 explores
the design space for asymmetric architectures. Sec-
tion 4 presents our case study, which discusses in de-
tail the fault-and-migrate design, its Linux implemen-
tation, and our preliminary evaluation. We conclude
with a list of hardware suggestions for improving OS
management of asymmetric cores and discuss future
work in Section 5.

2. Related Work

Heterogeneous processing traditionally has treated the
“different” cores as coprocessors or peripherals. For
example, NVIDIA’s compute unified device architec-
ture (CUDA* ) exposes graphics processors as a copro-
cessor through libraries and OS drivers [19]. The Cell*

processor runs applications on the Power Processor El-
ement and offloads pre-defined code blocks to a set
of Synergistic Processor Elements [8]. The EXOCHI
system allows applications to offload compulation to
a graphics processor via libraries and compiler exten-
sions [22]. The C-CORE environment uses an Intel®

IXP2400 network processor via the PCI interface to
accelerate communication processing [17].

All of these designs require that the programmer
partition the code into blocks and each block run on
its specific type of core. For instruction-based asym-
metric processors, this model burdens the programmer
and can lead to inefficient core utilization, since a code
block cannot utilize other types of cores. Our design
allows the OS to manage all cores as traditional CPUs
and dynamically handle instructions on cores that do
not support them. Thus, we enable applications to
transparently execute and fully utilize core resources.

The Multiple Instruction Stream Processing (MISP)
architecture [9, 22] employs a proxy execution mech-
anism that is similar to fault-and-migrate. However,
it requires hardware support for user-level faults and
inter-processor communication, while our design has
no such requirement and re-uses existing OS migra-
tion support. Furthermore, MISP runs OS services,
such as system calls, and exception and interrupt han-
dling, only on the OS-managed cores; any invocation
of them on the application-managed cores triggers a
fault and migration, whereas we incur this overhead
only when a core executes a missing instruction.

Prior research also studied single-ISA performance-
asymmetric architectures [2, 3, 6, 7, 15, 16, 18]. These
studies are complementary to ours as we expect future
processors to possess both performance and functional
asymmetry.

3. Design Space

We explore the design space of asymmetric archi-
tectures in terms of types of asymmetry, hardware-
software interface, and programming models.

3.1. Types of Asymmetry

We consider two types of asymmetry: performance
and functional. Withperformance asymmetry, cores
may differ in performance due to different clock
speeds, cache sizes, and microarchitectures. All of
these differences, however, manifest to software as
only performance differences. Such designs enable
higher energy efficiency while maintaining OS and ap-
plication compatibility.

Alternatively, functional asymmetryallows cores
to have different functionalities. For example, some
cores may be general-purpose while others perform
fixed functions such as encryption and decryption.
Even if all cores are general-purpose, they can have
different functionalities due to ISA differences. For
example, to save die space, a processor may support
SSE on some cores, but not others. We use the term
ISA to refer to the portion of a system that is visible
to software, including instructions, architectural reg-
isters, data types, addressing modes, memory archi-
tecture, exception and interrupt handling, and external
I/O [20]. Without adequate support, applications com-
piled for one ISA can fail on cores with a different ISA,

2



even when the difference is small.
There are multiple dimensions of functional asym-

metry, one for each aspect of the ISA. In the extreme
case, a processor consists of cores with disjoint ISAs,
such as Intel® IXP processors [21] and some imple-
mentations of integrated CPU and GPU cores. Alter-
natively, cores can have overlapping ISAs. The Cell*

processor is an example where cores differ in most as-
pects of the ISA, but share the same data types and
virtual memory architecture [8]. Due to the new in-
struction set, Cell* requires significant programming
efforts for the software ecosystem, including the OS,
compilers, libraries, tools, and so forth.

In this paper, we investigate a less radical design,
instruction-based asymmetry, in which cores are iden-
tical in every aspect of the ISA, except that they can
have overlapping, but non-identical instruction sets
and architectural registers.

3.2. Hardware-Software Interface

We explore the design choices in terms of how the
hardware exposes asymmetries and how software dis-
covers them.

Exposing asymmetries. We consider three models
for exposing hardware asymmetries:

• Virtual-ISA model: hardware (or firmware) hides
asymmetries and presents to software an illusion
of identical cores via a virtual ISA common to all
cores [1]. This design greatly simplifies program-
ming, but, on the other hand, significantly compli-
cates hardware. Furthermore, lacking knowledge
about application semantics hinders hardware from
making resource management decisions that best
meet application needs.

• Coprocessor model: hardware exposes a subset of
cores as one or more coprocessors or peripheral de-
vices. The OS code runs only on the main cores. Ap-
plications use the coprocessor cores as accelerators
and access them via libraries and, in some cases, OS
drivers. This is the model in Cell* [8], CUDA* [19],
and EXOCHI [22]. Since it requires partitioning
code to different types of cores, this model adds bur-
den to the programmer and can lead to load imbal-
ance, resulting in low system throughput.

• CPU model: hardware exposes all cores as CPUs,
which share a physical address space, and the OS
manages them directly. This model requires changes
to core OS functions and both the processor and
OS vendors to fully cooperate, leading to poten-
tially longer time-to-market. However, with the OS
managing all cores and handling asymmetry, this
model enables applications to transparently execute
and fully utilize the available cores in the system.
Our case study assumes this model.

Discovering asymmetries. Except virtual-ISA, the
other two models both require an interface for software
to discover asymmetries. The coprocessor model can
apply traditional I/O device discovery via memory-
mapped I/O, special instructions, and so forth. Sim-
ilarly, the CPU model can extend traditional CPU fea-
ture discovery interface, such as CPUID in Intel® Ar-
chitecture (IA) [11], to both return the existing fea-
tures of a core and indicate the missing ones available
on other cores in the same processor. If hardware dis-
covery is unavailable, the OS can build this topology,
though less efficiently, by observing application faults
and migrating applications between cores repeatedly
until reaching one that supports the missing feature.

3.3. Programming Models

The choice of programming model is closely tied to
how hardware exposes asymmetries. The virtual-ISA
model allows the system to retain traditional multi-
processor programming models, potentially providing
maximum OS and application compatibility. The co-
processor model often adopts a master-slave program-
ming style, where programs mostly run on the main
cores and invoke libraries or OS services to offload
pre-defined tasks to the coprocessor cores. This model
requires that the programmer statically partition the
code and map them to the appropriate types of cores.

With the CPU model, the modified OS dynamically
schedules threads based on the instruction set they use
and the load on each core, which simplifies application
programming and enables better load balance. The
programmer and compiler can use any instruction from
the superset of the instruction sets of all cores. At run
time, a missing instruction triggers a fault and the OS
either resolves it or passes it to the application to al-

3



low the application to emulate the instruction or load a
different binary.

4. OS Support for Instruction-based
Asymmetry: A Case Study

This section presents a case study on the OS support
for instruction-based asymmetric architectures.

4.1. Architecture

Our architecture makes the following choices:

• Instruction-based asymmetry: it allows manufactur-
ers to re-use cores targeted at different market seg-
ments or from different generations. Compared to
more complex designs, such as Cell* , it greatly sim-
plifies software enablement and backward compati-
bility.

• CPU model: it simplies both hardware design and
application programming. With the OS managing
all cores, applications can execute transparently and
efficiently utilize core resources.

4.2. OS Support

We expect future asymmetric processors to exhibit
both performance and functional asymmetry. Since
functional asymmetry presents an immediate chal-
lenge to the execution of applications, this section fo-
cuses on the necessary OS support for it. Interested
readers may refer to our previous studies [4, 18] for
performance asymmetry.

Our design extends an existing OS with a fault-and-
migrate mechanism. We assume that the hardware
triggers a fault-type exception when executing an un-
supported instruction. For IA cores, this exception al-
ready exists, known as the invalid opcode exception,
or UD fault [12]. In the fault handler, our mechanism
migrates the faulting thread to one of the cores that
supports the faulting instruction. On the new core, the
thread resumes execution and re-executes the faulting
instruction.

To balance load, we allow the existing OS load bal-
ancer to later migrate the thread back to its original
core. However, if the thread executes missing instruc-
tions frequently, it can thrash between cores. To bal-
ance the effort, we have studied two policies. First, we

allow a thread to migrate back after one quantum of
execution on its new core. The second policy tracks in-
structions the thread retires on the new core that would
otherwise fault on the old core. If none is found for an
entire quantum, the thread can migrate back.

4.3. Discussion

Support for core pinning. Some OSes support core
pinning, which confines a thread to only a set of cores.
Thus, when deciding where to migrate a thread, we
consider only cores that both support the faulting in-
struction and allow the thread to run on. To handle
the case that no such core exists, our design includes
a system call to allow applications to override fault-
and-migrate. In this case, the OS sends a signal to the
faulting thread, which can choose to either abort or in-
voke a handler of its own.

Migration versus emulation. Migration between
cores with independent caches causes a thread to re-
load cache state with extra cache misses. Previous
work [18] shows that this overhead is negligible on
SMP systems, but can be significant on NUMA. We
expect a similar trend in future multi-core systems.
When migration overhead is high, our mechanism can
choose to emulate a faulting instruction as opposed to
migrate. If a thread faults frequently and the fault han-
dling overhead is too high, binary translation could
be used to avoid the unsupported instructions alto-
gether [5, 10, 13].

Faulting in OS code. Certain OS code paths present
specific issues to migration. In general, if the code
is marked non-preemptible, it cannot be transparently
migrated. Thus, we suggest that all non-preemptible
OS code only use instructions supported by all cores.
To prevent recursive faults, we make the same sugges-
tion to code that implements fault-and-migrate.

4.4. Implementation

This section describes three prototypes for emulating
functional asymmetry and our Linux implementation
of fault-and-migrate.

4



4.4.1 Asymmetry Emulation

We have emulated an instruction-based asymmetric
processor in three ways:

• Disabling FP: using an Intel® SMP system, this ap-
proach emulates the removal of the entire FP instruc-
tion set on a subset of cores by setting the EM, MP,
and TS bits of register CR0 to 0, 1, and 1 [12].
Each FP instruction on these cores, including x87
and SIMD (i.e., MMX and all versions of SSE), trig-
gers a device-not-available (NM) fault.

• Disabling SSE: this approach emulates the removal
of selected set of SSE instructions on a subset of
the cores. First, we disable FP instructions on these
cores as described above. Next, we extend the NM
fault handler in Linux with an x86 instruction de-
coder, which checks if the faulting instruction is one
of those SSE instructions to be disabled on this core.
If so, we migrate the faulting thread; otherwise, we
allow the thread to continue on this core. For the lat-
ter, the fault handler first disables FP faulting such
that the instruction that just faulted can successfully
re-execute. Then, using one of the hardware break-
point registers, the fault handler inserts a breakpoint
at the instruction immediately following the faulting
one. Upon reaching the breakpoint, the breakpoint
exception handler re-enables FP faulting.

• Asymmetric dual-processor (DP) platform: We con-
structed a DP system with a quad-core Intel® Xeon®

X5355 processor in one socket and a quad-core
E5440 in the other. In addition to instruction-based
asymmetry, this system also provides core frequency
and L2 cache size asymmetry. The X5355 is 2.66
GHz with a 4 MB L2 cache and no support for
SSE4.1, whereas the E5440 is 2.83 GHz with a 6
MB L2 and supports SSE4.1.

Since asymmetric configurations are generally out-
side the specification of current processors, most ex-
isting BIOS disallows booting if it detects a mis-
match in processor family, maximum frequency,
voltage, or cache size. We modified the BIOS in our
DP system to bypass these checks and allow the pro-
cessors to operate potentially outside of their speci-
fied supply voltages.

4.4.2 Fault-and-migrate Implementation

We have implemented fault-and-migrate in Linux ker-
nel 2.6.20. As shown with the three emulation proto-
types, our design generalizes across platforms.

Fault handling. For the two FP-based prototypes,
we modified Linux’s NM fault handler to handle FP
faults and statically configured a subset of cores to
be de-featured. For the asymmetric DP platform, we
modified the UD fault handler to handle faults of exe-
cuting SSE4.1 on the X5355. To discover asymmetry,
our code uses CPUID at boot time to construct a map
of SSE4.1 capabilities for all cores. When a fault oc-
curs, our fault handler changes the CPU mask of the
faulting thread to include only cores capable of SSE4.1
and allowed by its original mask.

Migration. To migrate a faulting thread, the fault
handler awakens Linux’s migration thread on that core
and suspends itself, which enables the handler to re-
turn quickly. When the migration thread runs, it mi-
grates the faulting thread to an arbitrary core allowed
by its new CPU mask. Alternatively, it can select the
least loaded core. To minimize the cost of handling
the fault, we currently choose the former approach and
rely on Linux’s periodic load balancing to handle any
load imbalance that might occur.

Migrating back. We have implemented two policies
to control when a thread is eligible to migrate back to
its original core:

• Always: this policy always resets the thread’s CPU
mask to its original value after it completes one
quantum on the new core.

• Counter-based: this policy counts the number of
instructions the thread retires on the new core that
would otherwise fault on the original. If zero for a
quantum, it resets the thread’s CPU mask.

Neither policies explicitly migrate the thread. By
changing the CPU mask, we leverage Linux periodic
load balancing to decide when and where to migrate
the thread at a later time. The counter-based policy
counts instructions differently for different emulation

5



approaches. For the one that disables FP, it lever-
ages Linux’s per-threadfpu counter that counts
the number of consecutive quanta in which the thread
executes no FP instruction. For the other two, we use
the observation framework in Knauerhase et al. [14],
which tracks for each thread a set of hardware counter
events. Since current Intel® hardware does not support
counting arbitrary SSE instructions, nor SSE4.1 as a
whole, we count SIMD instructions for each thread.
This coarse-grained counting, however, can cause per-
formance problems, as we show in Section 4.5.

Support for frequency asymmetry. Linux assumes
a common core frequency and keeps global variables
for the frequency (cpu khz) and cycles per nanosec-
ond (cyc2ns scale). To support frequency asym-
metry in our DP platform, we modified Linux to main-
tain these variables and their operations on a per-CPU
basis.

4.5. Evaluation

This section discusses our preliminary evaluation.
Since our DP system is physically asymmetric, while
the other two prototypes are not, we present data from
this system. As a first step, our evaluation has focused
on how well fault-and-migrate supports instruction-
based asymmetry. To help isolate it from the perfor-
mance asymmetry aspects of our test system, we mod-
ified the BIOS to force all eight cores to operate at the
same 2.66 GHz frequency. The resulting system still
has cache size asymmetry, but presents a reasonable
isolation for our evaluation.

Workload. Our workload consists of eight threads,
one runninggamess, a SPEC CPU2006* FP bench-
mark, and the remaining seven each running an in-
finite loop that keeps incrementing a counter. We
compiledgamess using gcc 4.3 with-msse4.1,
which enables the use of SSE4.1 instructions. The
seven infinite loop threads contain no SSE4.1 instruc-
tions. We run these seven threads first, with each
pinned to a different core but leaving one of the X5355
cores idle. Then, we rungamess. Since the X5355
core is idle, Linux automatically placesgamess on
it. Because the X5355 does not support SSE4.1,
any SSE4.1 instruction invokes fault-and-migrate and

0

500

1000

1500

2000

2500

3000

Pinned Always SIMD counter-based

R
u

n
ti
m

e
 (

s
e
c
o

n
d

s
)

100% slowdown

4% slowdown

Figure 1: Fault-and-migrate performance.

causesgamess to migrate to one of the E5440 cores.
The policies described in Section 4.4.2 allowgamess
to restore its CPU mask at a later time. Since the orig-
inal X5355 core becomes idle, Linux’s load balancing
allowsgamess to migrate back to it. Thus,gamess
migrates back and forth between two different types of
cores, allowing us to stress-test fault-and-migrate.

Results. Figure 1 shows our performance results.
The first bar is the runtime ofgamess when it is
pinned and the only thread on an SSE4.1-capable
E5440 core, which we use as the baseline. The remain-
ing two bars show its runtime under the above work-
load for the Always and SIMD counter-based policies.
For Always,gamess experienced only 4% slowdown
over the baseline, which includes both the overhead of
fault-and-migrate and that due to a smaller L2 cache
size (4 vs. 6 MB) on the X5355. The latter can account
for a large fraction of this slowdown sincegamess
runs for the most time with a 4 MB cache in this set-
ting, as opposed to 6 MB in the baseline. Thus, we
estimate the overhead of fault-and-migrate to be much
smaller than 4% and leave detailed measurements as
future work.

One concern with the Always policy is that a thread
may thrash between cores if it faults frequently, which
motivated the counter-based policy. However, with
the SIMD counter-based policy,gamess shows 100%
slowdown, because it is SIMD-intensive—it retires at
least one SIMD (e.g., SSE2) instruction per quantum.
Thus, after its first migration, it stays on the E5440
core and never migrates back. Since there already
exists an infinite loop thread on this core,gamess
competes with it for CPU time, resulting in the halv-

6



0 200 400 600 800 1000 1200

Time (seconds)

Fault

No fault

Figure 2: UD fault distribution ofgamess.

ing of performance. This result suggests that, to ob-
tain best performance, hardware should support fine-
grained counting of asymmetric instructions.

Figure 2 shows the trace of UD faults that occurred
during the 1342-second execution ofgamess under
the Always policy. Each vertical line represents one
fault occurrence at that time. There are totally 120
faults, most of which are sparsely distributed, explain-
ing why fault-and-migrate incurred low overhead and
did not suffer from thrashing. The overhead can be
higher when threads fault more frequently. Our future
work will study how to efficiently handle these cases.

5. Conclusion

As multi-core processors continue to scale, the tradi-
tional approach of integrating identical cores can cause
inefficient utilization of chip real estate. Asymmetric
architectures provide an alternative cost-effective so-
lution. This paper explores the design space of these
emerging architectures and presents a case study of
instruction-based asymmetric architectures in which
cores have overlapping, but non-identical instruction
sets. We proposed a fault-and-migrate OS mechanism
that enables applications to execute transparently with
low overhead. Using current hardware, we developed
three prototypes to emulate future asymmetric proces-
sors. Our experience suggests three areas where hard-
ware can help improve OS management:

• Discovery of asymmetries: hardware should im-
prove existing CPUID or provide a new interface for
the OS to efficiently discovery the hardware asym-
metries.

• Notification of missing features: when a thread ex-
ecutes a missing instruction on a core, hardware
should provide enough information to allow the OS
to identify the specific instruction and determine
where to migrate the thread.

• Counting of missing instructions: hardware should
provide a counter for the retirement of each missing
instruction on each core of the processor. This infor-
mation can help the OS make more efficient schedul-
ing decisions.

In our future work, we plan to evaluate our de-
sign with more workloads, investigate more sophis-
cated migration policies, and improve performance for
applications with frequent faults.

Acknowledgments

We are grateful to our colleagues Srinivas Chennupaty,
David Koufaty, and Avinash Sodani for their valuable
comments and suggestions throughout this research.

References

[1] V. Adve, C. Lattner, M. Brukman, A. Shukla, and
B. Gaeke. LLVA: A low-level virtual instruction
set architecture. InProceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchi-
tecture, pages 205–216, Dec. 2003.

[2] M. Annavaram, E. Grochowski, and J. Shen. Mitigat-
ing Amdahl’s law through EPI throttling. InProceed-
ings of the 32nd Annual International Symposium on
Computer Architecture, pages 298–309, June 2005.

[3] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai.
The impact of performance asymmetry in emerging
multicore architectures. InProceedings of the 32nd
Annual International Symposium on Computer Archi-
tecture, pages 506–517, June 2005.

[4] J. M. Calandrino, D. Baumberger, T. Li, S. Hahn, and
J. H. Anderson. Soft real-time scheduling on perfor-
mance asymmetric multicore platforms. InProceed-
ings of the 13th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, 2007.

[5] K. Ebcioğlu and E. R. Altman. DAISY: Dynamic
compilation for 100% architectural compatibility. In
Proceedings of the 24th Annual International Sympo-
sium on Computer Architecture, pages 26–37, June
1997.

7



[6] A. Fedorova, D. Vengerov, and D. Doucette. Oper-
ating system scheduling on heterogeneous core sys-
tems. InProceedings of the First Workshop on Op-
erating System Support for Heterogeneous Multicore
Architectures, Sept. 2007.

[7] S. Ghiasi, T. Keller, and F. Rawson. Scheduling for
heterogeneous processors in server systems. InPro-
ceedings of the 2nd Conference on Computing Fron-
tiers, pages 199–210, May 2005.

[8] M. Gschwind. The Cell broadband engine: Exploiting
multiple levels of parallelism in a chip multiproces-
sor. International Journal of Parallel Programming,
35(3):233–262, June 2007.

[9] R. A. Hankins, G. N. Chinya, J. D. Collins, P. H.
Wang, R. Rakvic, H. Wang, and J. P. Shen. Multiple
instruction stream processor. InProceedings of the
33rd Annual International Symposium on Computer
Architecture, pages 114–127, June 2006.

[10] S. Hu, I. Kim, M. H. Lipasti, and J. E. Smith. An ap-
proach for implementing efficient superscalar CISC
processors. InProceedings of the Twelfth Interna-
tional Symposium on High-Performance Computer
Architecture, pages 41–52, Feb. 2006.

[11] Intel. Intel® processor identification and the CPUID
instruction. Application Note 485, Intel Corporation,
Dec. 2007.

[12] Intel. Intel® 64 and IA-32 Architectures Software De-
veloper’s Manual, Volume 3A: System Programming
Guide, Part 1. Intel Corporation, Feb. 2008.

[13] A. Klaiber. The technology behind Crusoe proces-
sors. White Paper, Transmeta Corporation, Jan. 2000.

[14] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn.
Using OS observations to improve performance in
multi-core systems.IEEE Micro, June 2008. To ap-
pear.

[15] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ran-
ganathan, and D. M. Tullsen. Single-ISA heteroge-
neous multi-core architectures: The potential for pro-
cessor power reduction. InProceedings of the 36th
Annual IEEE/ACM International Symposium on Mi-
croarchitecture, pages 81–92, Dec. 2003.

[16] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P.
Jouppi, and K. I. Farkas. Single-ISA heterogeneous
multi-core architectures for multithreaded workload
performance. InProceedings of the 31st Annual Inter-
national Symposium on Computer Architecture, pages
64–75, June 2004.

[17] S. Kumar, A. Gavrilovska, K. Schwan, and S. Sun-
daragopalan. C-CORE: Using communication cores
for high performance network services. InProceed-
ings of the 4th IEEE International Symposium on Net-
work Computing and Applications, pages 171–178,
July 2005.

[18] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn. Ef-
ficient operating system scheduling for performance-
asymmetric multi-core architectures. InProceedings
of the 2007 ACM/IEEE Conference on Supercomput-
ing, Nov. 2007.

[19] NVIDIA. NVIDIA CUDA Programming Guide, Ver-
sion 1.1. NVIDIA Corporation, Nov. 2007.

[20] R. Ramanathan, R. Curry, S. Chennupaty, R. L. Cross,
S. Kuo, and M. J. Buxton. Extending the world’s
most popular processor architecture. White Paper, In-
tel Corporation, 2007.

[21] M. Venkatachalam, P. Chandra, and R. Yavatkar. A
highly flexible, distributed multiprocessor architec-
ture for network processing.Computer Networks,
41(5):563–586, Apr. 2003.

[22] P. H. Wang, J. D. Collins, G. N. Chinya, H. Jiang,
X. Tian, M. Girkar, N. Y. Yang, G.-Y. Lueh, and
H. Wang. EXOCHI: Architecture and programming
environment for a heterogeneous multi-core multi-
threaded system. InProceedings of the ACM SIG-
PLAN 2007 Conference on Programming Language
Design and Implementation, pages 156–166, June
2007.

Intel and Intel Xeon are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States and other
countries.
* Other names and brands may be claimed as the property of others.

8


