

A Shared Global Event Propagation System to Enable Next Generation
Distributed Services

Paul Brett, Rob Knauerhase, Mic Bowman, Robert Adams,
Aroon Nataraj, Jeff Sedayao, Michael Spindel

Intel Labs, Intel Corporation

Abstract

The construction of highly reliable planetary-scale distributed services in the unreliable Internet environment entails
significant challenges. Our research focuses on the use of loose binding among service components as a means to
deploy distributed services at scale. An event-based publish/subscribe messaging infrastructure is the principal
means through which we implement loose binding. A unique property of the messaging infrastructure is that it is
built on a collection of off-the-shelf instant messaging servers running on PlanetLab. Using this infrastructure we
have successfully constructed long-running services (such as a PlanetLab node status service) with more than 2000
components.

1. Introduction

As many can attest, building a planetary-scale,
distributed service differs substantially from building a
traditional distributed service within a data center. A
planetary-scale service must be architected for
reliability even though it is built on highly unreliable
components. It must adapt to a rapidly changing
compute and communication environment. It must
provide appropriate quality of service and performance
for a globally distributed client community while also
scaling to accommodate highly variable workloads.

Our research focuses on building planetary-scale
services as a composition of many small, highly
replicated component services. The components of a
service are loosely bound together using an event-
based, publish/subscribe messaging infrastructure
called “Planetary-Scale Event Propagation and
Routing” (PsEPR, pronounced “pepper”). Loose
binding inverts the convention that a client initiates a
connection to a service and waits for a response.
Instead, in the spirit of Pandemonium [Selfridge59], a
service publishes events to a communication channel
with no a priori knowledge of the clients that are
subscribed to or acting on the events. The
communication channel isolates a service endpoint
(defined by the channel abstraction) from a service
instance (authenticated code that implements the
specific service). Loose binding of components enables
migration and replication of service instances,
simplifies composition among services, and hides
differences among multiple implementations of a
particular service.

This paper focuses on the PsEPR messaging
infrastructure, how it enables loose binding for
planetary-scale services, and its implementation on an
overlay network of commodity, off-the-shelf instant
messaging servers deployed on PlanetLab [Peterson02].

2. Architecture of Planetary-Scale Services

2.1. Characteristics

While building and deploying services that monitor the
health of PlanetLab nodes and audit traffic in PlanetLab
[Trumpet03], we observed the following behaviors that
differentiate planetary-scale services from traditional
data-center services:

• Compute resources are unreliable.
• Network connections are unreliable.
• Bandwidth is variable.
• Latency is variable.
• Network routes are not guaranteed to be transitive.
• Network connections pass through multiple address

spaces.
• Firewalls exist, and tunnel methodologies (if

available) differ.
• Load (of the system overall, or of individual parts

of the system) is highly variable.

These behaviors impact the design of planetary-scale
services in many ways. Further compounding matters
are the possibility of service instances having multiple
versions, or being intermittently unavailable.

Loose binding among service components is an
alternative approach to constructing distributed services
that holds promise for addressing the problems listed
above. We define loose binding as runtime discovery
and utilization of independent (yet interoperating)
components that can be assembled to provide a new,
useful function, much as anticipated more than 30 years
ago by Pandemonium.

Properties of loosely bound services include:

• Location (endpoint) independence – Services
rendezvous with each other without needing to

know the location of particular instances of the
service. Further, many instances of a service may
be connected to a communication channel
simultaneously. Services may migrate between
physical (and virtual) network locations without
clients becoming aware of their migration.

• Service independence – Neither the publisher nor
the subscriber of a service needs to know of the
existence of the other, beyond whatever meta-
information is (optionally) established by the
application developers beforehand. Adding
instances of a service (or alternative
implementations of a service) is transparent to
existing services and instances.

• Timing independence – The most basic form of
ommunication among components of a service is
asynchronous. Synchronous messages, remote
procedure calls, transactions and other forms of
interprocess communication are themselves
implemented as service components.

• Protocol independence – Services assert interface
specifications without the need for global
agreement, making services essentially self-
describing. Responsibility for interpreting the
output of a service lies with the consumer of the
service. Negotiation of interface specifications is
yet another value-add service component.

Section 5 describes PLDB, a loosely-bound service that
demonstrates these properties.

3. Planetary-scale Event Propagation and
Routing

We built PsEPR, an event-based messaging abstraction
with a form of publish/subscribe semantics, to support
our research into (and our development of) loosely
bound distributed services. Several design goals enable
PsEPR to support scalability, adaptability, and
reusability of services.

3.1. Events

A PsEPR event is an XML fragment that includes
addressing information and a typed payload. Figure 1
shows an XML fragment for an event generated by a
load average monitor running on PlanetLab. The
monitor sends the event to the 'plab1.ee.ucla.edu'
channel with a payload that identifies the current load
average as 2.3.
<query xmlns='psepr:event'>
 <from>
 <service>psepr_source</service>
 <instance>psepr::source</instance>
 </from>
 <to>
 <channel>plab1.ee.ucla.edu</channel>
 </to>

 <event xmlns='psepper:payload:attribute'>
 <field>loadavg.15</field>
 <value>2.3</value>
 </event>
</query>

Figure 1 – a PsEPR event

3.2. Addressing
Services publish a PsEPR event on a “channel”.
Practically speaking, a channel is a name. Channel
names are hierarchical, to enable prefix matches that
enable subscription to a family of related channels.
PsEPR does not enforce unique names for channels. To
send an event to a specific destination, an address can
optionally contain the name of a service (where
“service” is an authenticated identifier) and the name of
a specific instance of that service. The authenticated
source service and instance are included with every
event.

Channel-based addressing is the key to loose binding. A
service can publish events to a channel with no
information about the location of any subscribers (or
even whether there are any subscribers) – or about the
operations that will be performed on the events. A key
implementation problem for PsEPR is to implement
efficient routing for channels. One specific requirement
is that the addition of new subscribers to a channel is
completely transparent to existing publishers and
subscribers on that channel. In this way, new service
components can be added without affecting the
behavior of the current collection of services.

3.3. Client API

The PsEPR client API provides operations for sending
and receiving events:

• Send—Publish an event on a channel
• Register—Subscribe to events on a channel
• Unregister—Unsubscribe to events on a channel
• Process—Wait for an event to arrive

In PsEPR, the Send operation publishes events on a
channel. The Register operation, used to subscribe to
events on a channel, is implemented by sending a lease-
request event to the 'psepr_registry' service on the
channel. For example, a client interested in receiving
events that describe the state of 'plab1.ee.ucla.edu'
would send a lease request event to the registry service
listening on the 'plab1.ee.ucla.edu' channel; Figure 2
shows the payload for this event.
<event xmlns='psepr:payload:lease'>
 <duration>180</duration>
 <identifier>psepr-1099501240</identifier>
 <type>register</type>
</event>

Figure 2 – a PsEPR event payload

In the current implementation of PsEPR, there is a
single well-known registry service. However, since
lease requests (and the corresponding responses) are
just PsEPR events, it is possible to implement multiple
registration services; we use this facility to experiment
with alternative event routing algorithms – an example
of loose binding extending PsEPR itself.

4. Composition of Loosely-Bound Services
We have used PsEPR to build and deploy loosely
bound services on PlanetLab. Notable among these
services is PLDB (the PlanetLab Database) which
stores status information about PlanetLab nodes.
Formerly a tightly-bound XMLRPC application, PLDB
v2.0 is now a composition of many independent
services. A set of monitors, a tuple-store service, and
management components comprise the basic service.
Loose binding enables the seamless addition of value-
add components such as recommendation services,
debugging services, and performance visualization
services.

4.1. Monitors and Sensors

There are numerous PLDB monitors running on
PlanetLab. Monitors running on each PlanetLab node
observe properties like load average, currently installed
packages, and kernel checksums. Properties are sent as
PsEPR events to a channel that is named for the
PlanetLab node described by the property. Currently
more than 500 active monitors generate approximately
20,000 events daily.

4.2. Tuple-Store

A tuple-store service stores properties for PlanetLab
nodes. Each instance of the service listens for events on
a channel (recall that a channel is associated with each
PlanetLab node) and saves the properties in an in-
memory database. The tuple-store service also listens
on the channel for queries and emits events satisfying
the query. There are approximately 1500 instances of
the tuple-store service currently running on PlanetLab
,each with a database of about 50 tuples.

4.3. Management Supervisor

Redundancy (for robustness, reliability, and high
availability of the service) is implemented by
replicating the tuple-store service across many diverse
PlanetLab sites The management supervisor monitors
health of the tuple-store service, dynamically starting
and stopping instances to maintain availability. It also
optimizes the distribution of tuple-store instances for
network performance and client workload. Of course,
the management supervisor service communicates with
the tuple-store instances over PsEPR channels; the
tuple-store service publishes events on a well-known,
management channel to which the management

supervisor is subscribed.

4.4. Value-Add Services
Since PLDB monitors and sensors use PsEPR channels
for reporting information about PlanetLab nodes, other
services besides the tuple-store can leverage this
information. We have implemented several services that
aggregate these data and rate the quality and usability of
various PlanetLab nodes. The services publish
recommendations on the channel that are therefore
stored by the tuple-store service.

Another service we built was a PsEPR debugging
service (both for debugging the system itself, and later
for debugging services that use PsEPR). The debugging
service simply listens on a set of channels and displays a
timescale graph of traffic patterns, while also allowing
inspection of event payloads themselves. None of the
monitored components need even be aware of the
debugger’s existence.

Lastly, we built a PsEPR visualization service, both for
demonstration of the system and as another debugging
aid. This service subscribes to relevant channels,
receives events from those channels, discards the
payload in its entirety, and displays a connectivity
graph of services, routers, and nodes.

5. PsEPR Implementation Details
PsEPR consists of two components: a message router
and a registry service. The registry service receives
lease-request events and maintains a map of
subscriptions to service instances for PsEPR. In
addition, the registry server informs the message router
of clients who are interested in a particular channel.

The message router delivers events to interested local
clients and implements the overlay network used to
route events among PsEPR servers.

5.1. Overlay Routing

Client services can publish events to a channel with no
information about the location of any subscribers.
PsEPR constructs an overlay network to route events
among subscribers on a channel. The use of overlay
networks affords us great freedom to explore different
mechanisms of routing within the system without
affecting the operation of services on the edges.

5.1.1. Client to PsEPR connections

PsEPR services may be composed of many distributed
components. a number of factors including network
attributes (throughput, latency, etc.) and application
constraints (information location, diverse routing
requirements, etc) determine each component’s optimal
entry point into the PsEPR network. We choose to
make the client libraries primarily responsible for

establishing and maintaining the most efficient
connection to the PsEPR network. PsEPR message
routers send route-advice events to clients indicating
alternate entry points based on the router’s information
about the environment.

Client entry points are computed by offline analysis of
the PlanetLab network, based on “all-pairs-pings” data
collected for PlanetLab [Stribling04] augmented with
local site information. This produces a small set of
candidate PsEPR routers topologically proximate to a
given application instance.

5.1.2. PsEPR to PsEPR connections

PsEPR message routers assume the responsibility of
transparently and efficiently moving events to the
correct endpoint(s).

Initially we implemented a simple n-to-n broadcast in
which each PsEPR message router forwards events to a
dynamic list of servers. This algorithm was easy to
implement and allowed us to develop the service API,
client libraries, and some sample services without
waiting for a complete routing scheme. The broadcast
method scaled surprisingly well to as many as 100
routers and more than a half-million events per day.
However, as with any n2 algorithm, the n-to-n broadcast
quickly breaks down as either offered message load or
number of PsEPR message routers increases.

We also implemented a routing algorithm based on a
static minimal spanning tree. With this approach, when
a PsEPR message router forwards an event to neighbors
it knows are interested. A message router is “interested
in” an event if it has PsEPR clients who are subscribed
to the channel, or if it has neighbors who are “interested
in” the event (recursively). Unlike the broadcast
algorithm, the spanning tree approach accommodates
non-transitive routes (e.g. connections from the
commodity Internet to Internet2 nodes) and asymmetric
routes through a NAT or firewall. Our spanning tree is
generated using information on network latency taken
from “all-pairs-pings” data.

We are currently investigating variations on this
algorithm. Perhaps most importantly is dealing with
partitioning of the tree. A PsEPR message router can
cease responding for many reasons – software crash,
machine crash, intermittent unreachability due to
network congestion, etc. When this happens, a new
routing tree must be generated. Our algorithms include
tunable parameters for when and how often to
regenerate the routing trees, but we have not yet
thoroughly determined the settings that work best for
our anticipated workloads.

Currently, we maintain just one spanning tree and send
events to or through neighbors who are interested in the

event. Because our channel abstraction allows us to
know, dynamically, which listeners are on which
channels, we are evaluating the use of multiple
spanning trees, to more efficiently (in terms of latency,
hop-count, etc.) route events, e.g. avoiding PsEPR
servers which do not have direct clients interested in a
set of events. One disadvantage of this scheme is that
the overhead of generating, maintaining, and
distributing multiple trees may exceed the gain from
more efficient distribution; as our research progresses,
we hope to be able to quantify this for optimal, normal,
and pathological workloads.

5.2. Instant Messaging as Foundation
We elected to build our PsEPR prototype on top of an
instant-messaging (IM) system. IM has long been
popular for chatting among end users in home and
business settings. Importantly, the ubiquity of IM
infrastructure (existing servers, corporate firewall holes,
etc.) has brought this technology to the attention of
researchers [Knauerhase03] as a viable mechanism for
new types of application-to-application communication.

Our system is based on the open-source Jabber
[Jabber04] project. The choice to build on Jabber
results in some obvious and subtle trade-offs. For
example, using Jabber’s XMPP (eXtensible Messaging
and Presence Protocol) not only provides us with a
foundation of code (client libraries, server
infrastructure, etc.), but also the potential to capitalize
on its notions of presence for determining the health
and availability of individual PsEPR components.

Other benefits of building atop IM include the ability to
tunnel through firewalls, network-address translation
(NAT) systems, and so forth; as IM clients, we are able
to fully exploit this connectivity to our advantage. By
mapping our concepts into Jabber constructs (e.g.
“JIDs” and “resources” play the role of PsEPR services
and instances), we gain the benefit of object-level
addressing, enabling our channel abstraction and our
location-independence features (e.g. endpoints are no
longer fixed to an IP address or a particular socket). In
addition, we reuse Jabber’s authentication mechanisms
for PsEPR, freeing us from having to design and
implement our own solution. Lastly, since XMPP is
based on XML, it lends itself well to our goals of self-
describing events and communication.

The PsEPR registry and message router components are
implemented as IM clients. This offers several
advantages. For example, we can interoperate with
existing (non-PlanetLab) servers and we can run
multiple versions of PsEPR components (with different
addresses) connected to the same IM server. As our
research matures, we plan to explore the performance
and security benefits of integrating PsEPR directly into

an IM server, or possibly implementing our own
stripped-down “integrated PsEPR server” with only the
IM functionality required by the PsEPR system.

There are, of course, disadvantages. PsEPR
performance is limited both by the performance of the
IM servers themselves, and by the IM client connection
architecture. Additionally, XMPP’s heritage in XML
implies a verbosity that incurs significant overhead in
the encoding and transmission of small events.

The PsEPR client libraries hide details of the
underlying IM system. From the distributed service’s
point of view, one simply requests a connection, and
begins communicating. Client libraries are available for
Java, Perl, and Python.

5.3. Experimental Results

Through the course of development, we have been
interested in measuring the performance of our system.
Our results, while preliminary, are encouraging.
Primarily, we wished to show that PsEPR was fast
enough for general use (assuming a reasonable set of
client components). Beyond that, we were concerned
with scalability – both in terms of capacity, and in
performance under global load. While our current
implementation has not been optimized for
performance, we wished to establish whether the
system could provide a useful service on PlanetLab.

We created a test network of ten routers, with n event
sources and n event sinks attached to each router. All
event sinks subscribed to a single channel, to which the
sources transmitted simple events. The use of a single
channel results in a worst case configuration in which
every event must be transmitted to every client (and
therefore every router). Event sources transmit events
into the system as quickly as possible, and the total time
it takes for a stream of 100 events to arrive at each of
the sinks is measured. An average response time can
then be computed from the timing of the event arrivals.

N (Sources/ Sinks) 1 2 3 4

Routers 10 10 10 10

Total Events 2,000 6,000 12,000 20,000

Avg Response Time (s) 0.77 0.94 2.22 3.45

Table 1 - PsEPR Performance Measurements

Initial results (Table 1) indicate that loads estimated to
be an order of magnitude greater than that generated by
PLDB 1.0 could be sustained on a single channel.

6. Related and Future Work

6.1 Other Publish/Subscribe message
systems

XMPP Pub/Sub[Millard04] relates closely to PsEPR
because it uses Jabber and XMPP as a foundation. A
commercial implementation exists from PubSub.com
(http://www.pubsub.com). This protocol does not
specify routing between IM servers; the assumption is
that all clients connect to one server.

The Web Services community has developed a family
of specifications collectively called WS-Notification
[Graham04]. These specifications define XML schema
for standardized notification (event delivery) from
“notification broker service providers”, as well as
mechanisms by which publishers can deliver events to
the provider. WS-Notification is integrated with other
web service protocols (e.g. for security and addressing).

Many other publish/subscribe mechanisms exist, from
the Java Message Service [Happner02] to TIBCO
Corporation’s Rendezvous [Tibco04]. The Internet
Indirection Infrastructure (i3) [Stoica02] has many
similar ideas to PsEPR and can support late bindings
for functions like load balancing and server selection.
PsEPR differs from these mechanisms by abstracting
message routing functionality and hiding it from
publishers and subscribers. Similar to i3, our system
allows use of different overlays and routing schemes as
needs and research interests require. COBEA [Ma98]
infrastructure attempts additional functions such as
defining proxies and implementing alarms – PsEPR has
a simpler interface and leaves these functions to higher-
level services.

Most of the systems described in this section differ
from PsEPR in that they assume just one message
server, and they have a “connection-based” approach to
subscription/registration. While i3 shares PsEPR’s
ideas about object naming, it too does indirection based
on connections, rather than on loose channel bindings.

6.2 Next steps
Work is currently underway to continue developing our
debugging and visualization toolsets for PsEPR
applications, which would further assist in development
of applications based on our channel messaging
abstraction.

For simplicity, we implement Jabber’s store of
id/password with a centralized user database that feeds
a copy at each PsEPR node. This central canonical
store and synchronization will undoubtedly limit the
future scalability of the system. Additionally, having a
single central authority for authentication may present
organizational limitations as more diverse users join the
system.

The messaging infrastructure currently contains no
mechanism to apply flow control to prevent a single
application from flooding the network with events.
Local policies can be established on a per router basis
to prevent abuse of the network in the short term, but
setting and enforcing appropriate global policies
remains unsolved.

6.3 Future research
We plan to continue exploring what features the event-
propagation system should provide, and how best to
expose those in a general way to maximize utility to
loosely bound distributed applications. Similarly, we
have begun thought about how to “component-ize”
PsEPR itself, for example, to formalize the layering of a
low-level transport service supporting multiple
(possibly competing) higher-level routing and event-
management services.

We believe there are nontrivial questions in the
determination and maintenance of an overlay network
in an environment like PlanetLab. As nodes go up and
down (or, often, suffer load that makes them worse than
down, in that they are active but excruciatingly slow),
we would like our service to be much more adaptive,
responding more quickly and more intelligently.

Lastly, there also exist many interesting problems in
finding the right mix between topologies for our
overlay (e.g. bus, star, spanning tree, DHT, and
combinations of the above) that provide acceptable
reliability while not generating excessive traffic, again
complicated by network load, CPU load, and failures.

7. Summary
Our research supports our assertions that a loose
binding methodology supports scalability, adaptability,
and robustness in distributed systems. In support of this
methodology, we built a planetary-scale event
propagation and routing system (PsEPR) that allows
composition of services from components. In our
system, services publish self-describing events to a
communication channel rather than waiting to be
contacted by clients.

To validate our system, we converted the PlanetLab
Database (PLDB) and Trumpet sensors/monitors from a
tightly-coupled monolithic service to a collection of
loosely-bound components. We also developed other
interesting services that interact and interoperate with
the data generated by our sensors, providing useful
functionality without requiring any change to the
original components.

Our message system is constructed by setting up an
overlay network of commercial-grade Instant Message
servers. We validated the performance and scalability
of the system both by running PLDB over PsEPR and

by measuring performance and scalability under
pathological (worst-case in traffic and in un-optimized
code). We plan to continue developing the system, in
exploration both of overlay routing and of techniques to
develop loosely-bound distributed services.

 8. References

[Graham04] Steve Graham et al., “Web Services
Base Notification 1.2”, http://docs.oasis-
open.org/wsn/2004/06/wsn-WS-BaseNotification-1.2-
draft-03.pdf

[Happner02] Mark Happner et al., ”Java Message
Service 1.1”,
http://java.sun.com/products/jms/docs.html

[Jabber04] Jabber Software Foundation, “What
is Jabber?”, http://www.jabber.org/about/overview.php

[Knauerhase03] Rob Knauerhase and Krystof
Zmudzinski, “Mobilized Instant Messaging”,
http://www.mobilizedsoftware.com/developers/showAr
ticle.jhtml?articleId=17100270

[Ma98] Chaoying Ma and Jean Bacon, “COBEA: A
CORBA-Based Event Architecture,” 4th USENIX
Conference on Object-Oriented Technologies and
Systems (COOTS), Santa Fe, 1998.

[Millard04] Peter Millard, “Jabber Enhancement
Proposal JEP-0060”, http://www.jabber.org/jeps/jep-
0060.html

[OpenIM04] OpenIM project website, http://open-
im.net/en/

[Peterson02] Larry Peterson, Tom Anderson,
David Culler, Timothy Roscoe, “A Blueprint for
Introducing Disruptive Technology into the Internet”,
in Proceedings of First ACM Workshop on Hot Topics
in Networking (HotNets), October 2002

[Selfridge59] Oliver Selfridge, “Pandemonium: A
Paradigm for Learning,” Proceedings of Symposium on
the Mechanization of Thought Processes, 511-29.

[Stribling04] Jeremy Stribling, “PlanetLab All
Pairs Pings” data available from
http://www.pdos.lcs.mit.edu/~strib/pl_app/

[Stoica04] I. Stoica, D. Adikins, S. Zhuang, S.
Shenker, and S. Surana. “Internet Indirection
Infrastructure”, SIGCOMM, 2002.

[Tibco04] TIBCO Corp., “TIBCO Rendezvous”,
http://www.tibco.com/software/enterprise_backbone/re
ndezvous.jsp

[Trumpet03] Intel Corp., “Trumpet User
Documentation”, http://jabber.services.planet-
lab.org/php/docs/users.php

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

